

Instructor: Christos Panayiotou

Outline

Hypothesis Testing

□ Maximum A Posteriori Probability (MAP) criterion

□ Bayes criterion

□ Neyman-Pearson (NP) criterion

- Estimator properties
- Estimation

□ Maximum A Posteriori Probability (MAP) criterion

□ Bayes criterion

□ Maximum Likelihood (ML)

Hypothesis Testing

Problem

- Assume a "system" with
- Take a measurement of the output y corrupted by noise y = s + n i = 0.1

$$y = s_i + n, \quad i = 0, 1$$

Decide which was the true output of the system

Hypothesis

- Make two *hypothesis*: H_0 which corresponds to the event that s_0 is the correct output and H_1 which corresponds to s_1
- Define Pr[H₀|y] and Pr[H₁|y] and decide that the output was
 S₀
 S₁

Maximum A Posteriori Probability (MAP) Criterion

- Assume we know the *prior* probabilities π₀ = Pr[H₀] and π₁ = Pr[H₁]
- We can use Bayes' Theorem

Therefore, the decision rule

- $\square s_0 \text{ if } \Pr[H_0|y] > \Pr[H_1|y] \text{ or}$ $\square s_1 \text{ if } \Pr[H_1|y] > \Pr[H_0|y]$
- Define *Decisions* D_0 and D_1 we can write

Likelihood Ratio

$$f(y | H_0) \pi_0 \gtrsim_{D_1}^{D_0} f(y | H_1) \pi_1$$

Rearrange terms to get

Define the Likelihood Ratio

$$L(y) = \frac{f(y | H_1)}{f(y | H_0)}$$

The MAP criterion

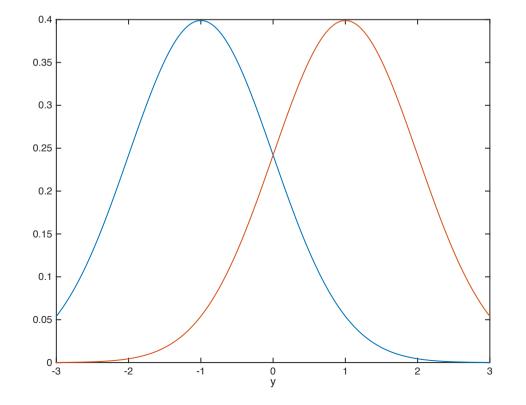
- Assume $s_0 = -a$ and $s_1 = a$.
- A priori probabilities $\pi_0 = 0.2$ and $\pi_1 = 0.8$
- Zero-mean Gaussian white noise

Solution

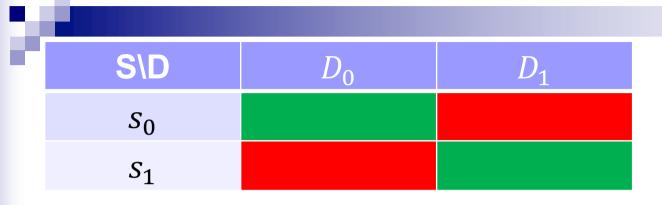
e.

• If
$$\pi_0 = \pi_1 = 0.5$$
,

• If
$$\pi_0 = 0.2$$
, $\pi_1 = 0.8$,

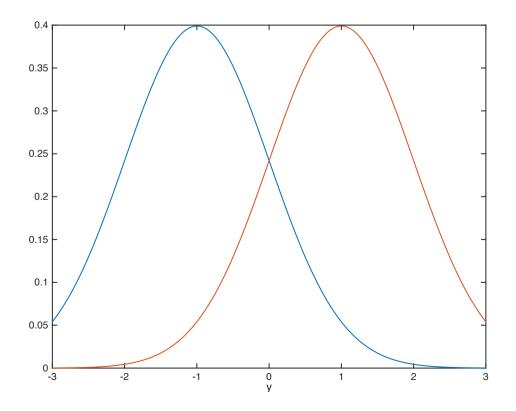


Types of Errors

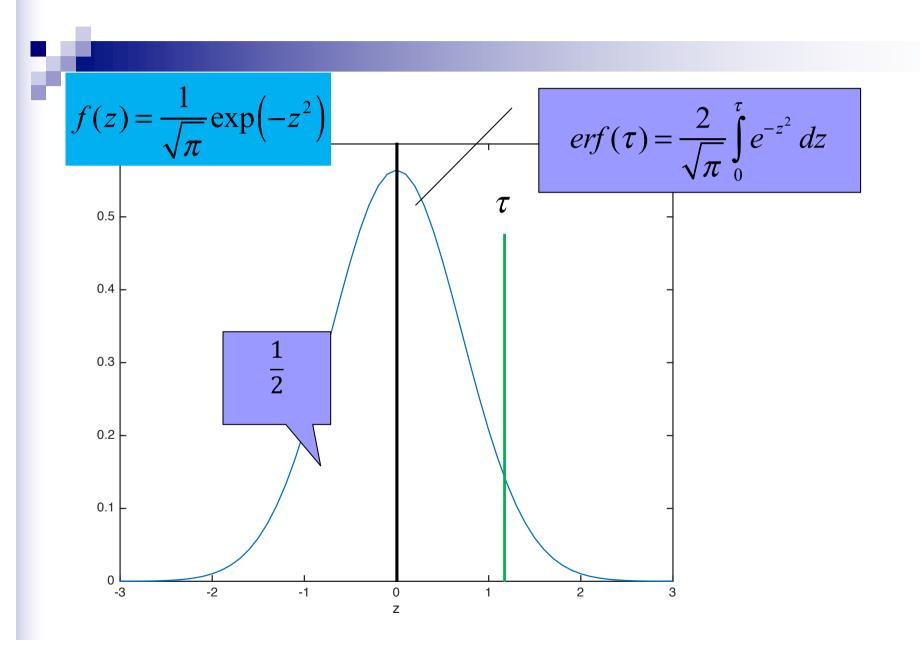


$$\Pr[s_{0}, D_{0}] = \int_{-\infty}^{\tau'} f(y | H_{0}) dy$$
$$\Pr[s_{1}, D_{1}] = \int_{\tau'}^{\infty} f(y | H_{1}) dy$$
$$\Pr[s_{0}, D_{1}] = \int_{\tau'}^{\infty} f(y | H_{0}) dy$$
$$\Pr[s_{1}, D_{0}] = \int_{\tau'}^{\tau'} f(y | H_{1}) dy$$

 $-\infty$

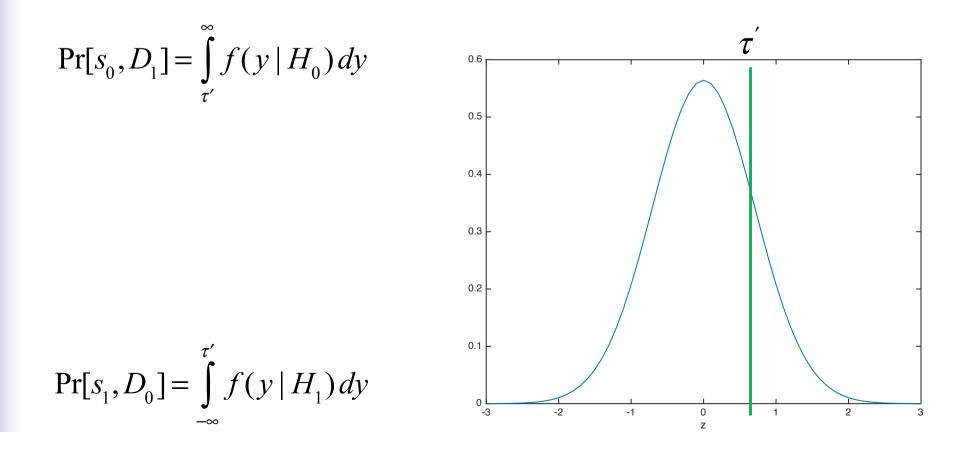


Gaussian Integrals



Gaussian Integrals

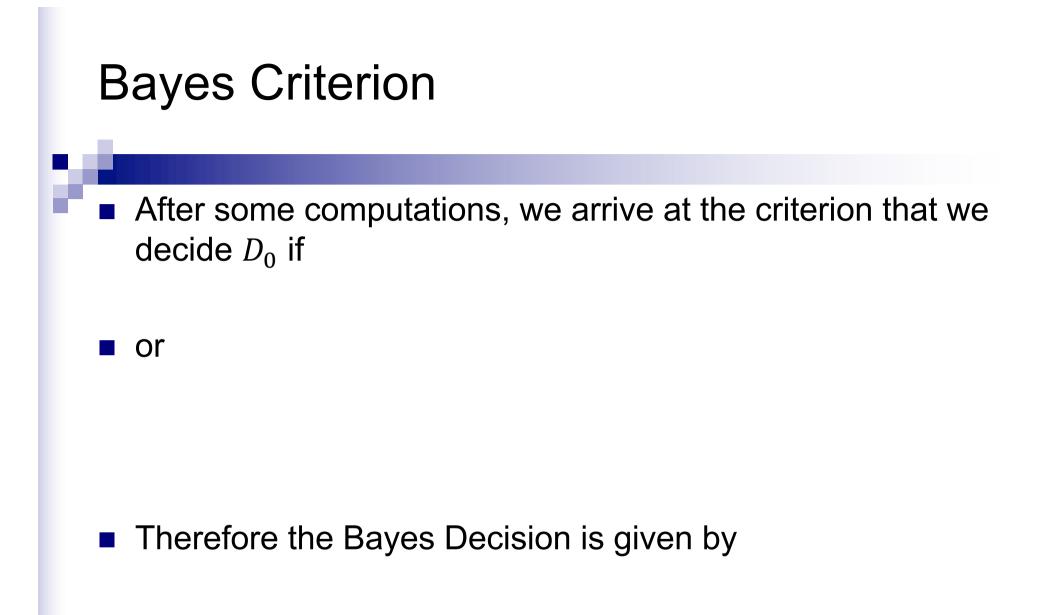
Let $Y \sim N(\mu, \sigma^2)$ and define the random variable $Z = \frac{Y - \mu}{\sqrt{2\sigma}}$. Then $Z \sim N(0, \frac{1}{2})$.



Bayes Criterion

()r

- Some errors may be more important than others!
- Assume we know the cost associated with every decision
- Assume we know the *prior* probabilities $\pi_0 = \Pr[H_0]$ and $\pi_1 = \Pr[H_1]$
- We can define the Bayes' risk (or cost)



• Assume
$$s_0 = -a$$
 and $s_1 = a$.

- A priori probabilities $\pi_0 = 0.2$ and $\pi_1 = 0.8$
- Costs: $C_{00} = C_{11} = 0$ and $C_{01} = 1$, $C_{10} = 2$
- Zero-mean Gaussian white noise

Neyman-Pearson (NP) Criterion

- What if neither costs nor prior probabilities are known?
- NP Criterion: Keep the False Alarm probability below some level α_f
- and maximize the detection probability
- Constrained optimization problem:

where we can obtain

Detection vs Estimation

- Detection theory involves the selection among a finite number of possible hypotheses
- Estimation theory involves the selection among a continuum of "hypotheses"
 - As the number of hypotheses in detection theory grows larger, the distinction between detection and estimation becomes blurred.

Estimator Properties

- Suppose that we want to **estimate** the value of a parameter α using the observations y_1, \ldots, y_n using an estimator $\hat{\alpha}_n$ which is a function of the observations. Then, it may be desirable that the estimator (which is a random variable) may have the following properties
- Unbiased

Consistent

Invariant under transformation. Let the function $g(\alpha)$, then

Estimator Properties Sufficient: Intuitively, this property states that the estimator utilizes all available information.

Minimum Variance:

 $\hfill\square$ The smaller the variance, the better the quality of the estimator.

□ Cramer-Rao lower bound

where $F(\alpha)$ is the Fisher Information

$$F(\alpha) = -E\left[\frac{\partial^2}{\partial \alpha^2} \ln f(y_1, \cdots, y_n; \alpha)\right]$$

Estimator Properties Efficient estimators, let two unbiased estimators $\hat{\alpha}_n^0$ and $\hat{\alpha}_n^1$ with $\hat{\alpha}_n^0$ being the one with the lowest variance. Then efficiency is defined as **Asymptotically Efficient**

Asymptotically Normal

 $\square \hat{\alpha}_n$ approaches a normal distribution as *n* goes to infinity

Maximum A Posteriori (MAP) Estimation

- We want to **estimate** the value of a parameter α using the observations y_1, \ldots, y_n and the a priori distribution $f(\alpha)$.
- MAP Estimator: *Maximize* the pdf $f(\alpha | \mathbf{y})$ where $\mathbf{y} = [y_1, \dots, y_n]$.
- Using Bayes' rule

Thus

Assume that

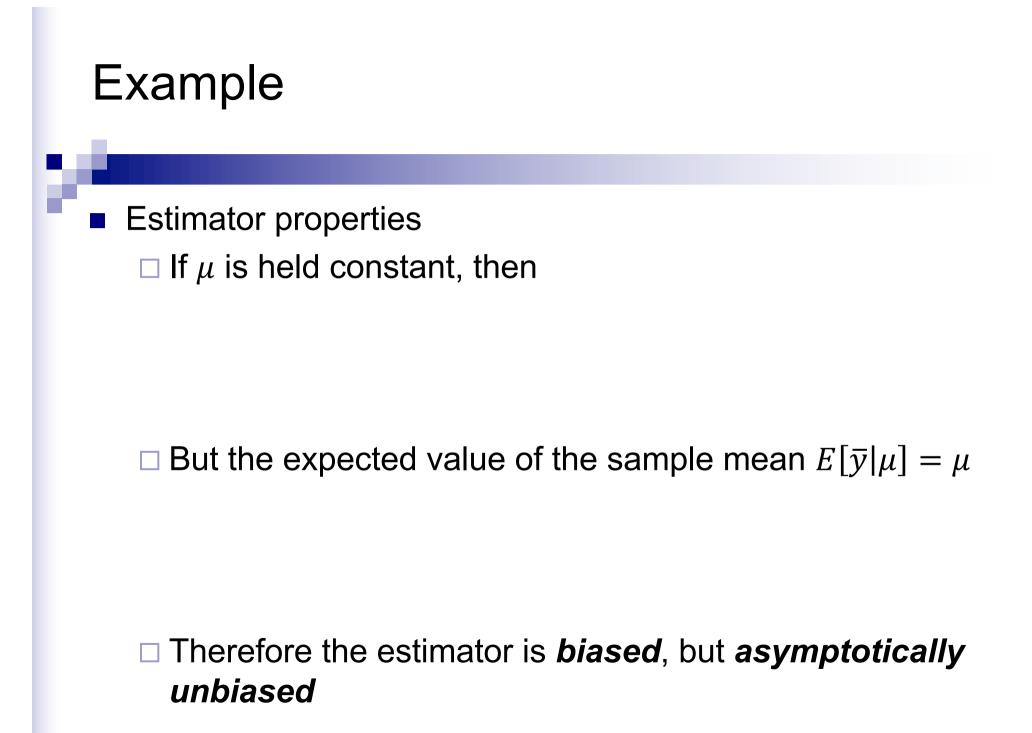
□ the observations $y_1, ..., y_n$ are i.i.d. taken from a Gaussian distribution with an *unknown mean* μ and known variance σ^2 , $y_i \sim N(\mu, \sigma^2)$, i = 1, ..., n.

 \Box The mean μ is also a random variable $\mu \sim N(m_1, \beta^2)$

MAP Estimator:

Set the derivative equal to 0

$$\frac{d}{d\mu} \left\{ \frac{1}{\left(2\pi\sigma^2\right)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \mu\right)^2 - \frac{1}{2\beta^2} (\mu - m_1)^2\right) \right\} = 0$$



Bayes' Estimator

We want to estimate the value of a parameter α using
the observations y = [y₁, ..., y_n]
the a priori distribution f(α).
the Bayes' cost (loss) which is a function of the error a_e = α - â
Bayes' Estimator:

Various cost functions

 $C(\hat{\alpha}, \alpha) = \begin{cases} 0 & \text{if } |a_e| \leq \Delta/2 \\ 1 & \text{if } |a_e| > \Delta/2 \end{cases}$

Bayes' Estimator

Mean Square Error (MSE)

$$\Box C(\hat{\alpha}, \alpha) = \alpha_e^2 = (\alpha - \hat{\alpha})^2$$

$$E\left[C(\hat{\alpha}, \alpha)\right] = \int_{-\infty}^{\infty} (\alpha - \hat{\alpha})^2 f(\alpha \mid \mathbf{y}) d\alpha$$

• Differentiate with respect to $\hat{\alpha}$

Bayes' Estimator

$$\hat{\alpha}_{MSE} = \int_{-\infty}^{\infty} \alpha f(\alpha \mid \mathbf{y}) d\alpha = E[\alpha \mid \mathbf{y}]$$

Using Bayes' Rule

$$f(\alpha | \mathbf{y}) = \frac{f(\mathbf{y} | \alpha) f(\alpha)}{f(\mathbf{y})} = \frac{f(\mathbf{y} | \alpha) f(\alpha)}{\int_{-\infty}^{\infty} f(\mathbf{y} | \alpha) f(\alpha) d\alpha}$$

Which results to

Assume that

□ the observations $y_1, ..., y_n$ are i.i.d. taken from a Gaussian distribution with an *unknown mean* μ and known variance σ^2 , $y_i \sim N(\mu, \sigma^2)$, i = 1, ..., n.

 \Box The mean μ is also a random variable $\mu \sim N(m_1, \beta^2)$

■ MSE Estimator:

with

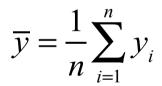
$$\hat{\mu}_{MSE} = \int \mu f(\mu | \mathbf{y}) d\mu = E[\mu | \mathbf{y}]$$

$$f(\mathbf{y} | \mu) = \frac{-\infty}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right)$$

Using Bayes' rule again we obtain

$$f(\mu | \mathbf{y}) = \frac{1}{\sqrt{2\pi\gamma^2}} \exp\left(-\frac{(\mu - \gamma^2 \omega)^2}{2\gamma^2}\right)$$

Where



SO

$$\Rightarrow \hat{\mu}_{MSE} = \frac{\beta^2 \overline{y} + \sigma^2 m_1 / n}{\beta^2 + \sigma^2 / n}$$

Maximum Likelihood (ML) Estimator

- We want to **estimate** the value of a parameter α using
 - \Box the observations $\mathbf{y} = [y_1, \dots, y_n]$
 - □ **NO** a priori distribution $f(\alpha)$ and **NO** cost function are available.
- ML Estimator: Maximize the likelihood distribution

• Assuming independent observations each with pmf $f(y_i|\alpha)$

Relation between ML and MAP Estimator

Again use Bayes' rule and taking logarithms

$$\ln f(\alpha | \mathbf{y}) = \ln f(\mathbf{y} | \alpha) + \ln f(\alpha) - \ln f(\mathbf{y})$$

For the minimization, take derivatives with respect to α

Assume that

□ the observations $y_1, ..., y_n$ are i.i.d. taken from a Gaussian distribution with an *unknown mean* μ and known variance σ^2 , $y_i \sim N(\mu, \sigma^2)$, i = 1, ..., n.

 \Box The mean μ is also a random variable $\mu \sim N(m_1, \beta^2)$

ML Estimator:

$$f(\mathbf{y} \mid \boldsymbol{\mu}) = \frac{1}{\left(2\pi\sigma^2\right)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \boldsymbol{\mu}\right)^2\right)$$

Set the derivative with respect to μ equal to 0.