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Outline 

n Hypothesis Testing 
¨ Maximum A Posteriori Probability (MAP) criterion 
¨ Bayes criterion 
¨ Neyman-Pearson (NP) criterion 

n Estimator properties 
n Estimation 

¨ Maximum A Posteriori Probability (MAP) criterion 
¨ Bayes criterion 
¨ Maximum Likelihood (ML)



Hypothesis Testing 

Problem
n Assume a “system” with 
n Take a measurement of the output 𝑦 corrupted by noise

n Decide which was the true output of the system 
y = si + n,    i = 0,1

Hypothesis 
n Make two hypothesis: 𝐻# which corresponds to the event 

that 𝑠# is the correct output and 𝐻% which corresponds to 𝑠%
n Define Pr 𝐻#|𝑦 and Pr 𝐻%|𝑦 and decide that the output was

¨ 𝑠#
¨ 𝑠%



Maximum A Posteriori Probability 
(MAP) Criterion

n Assume we know the prior probabilities 𝜋# = Pr 𝐻# and 
𝜋% = Pr 𝐻%

n We can use Bayes’ Theorem

n Therefore, the decision rule 
¨ 𝑠# if Pr 𝐻#|𝑦 > Pr 𝐻%|𝑦 or 
¨ 𝑠% if Pr 𝐻%|𝑦 > Pr 𝐻#|𝑦

n Define Decisions 𝐷# and 𝐷% we can write



Likelihood Ratio 

n Rearrange terms to get 

f ( y |H0 )π 0≷
D0

D1

f ( y |H1)π1

n Define the Likelihood Ratio 

L( y) =
f ( y |H1)
f ( y |H0 )

n The MAP criterion



Example 

n Assume 𝑠# = −𝑎 and 𝑠% = 𝑎.
n A priori probabilities 𝜋# = 0.2 and 𝜋% = 0.8
n Zero-mean Gaussian white noise

Solution 



Example 



Example 

n If 𝜋# = 𝜋% = 0.5, 
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n If 𝜋# = 0.2, 𝜋% = 0.8, 



Types of Errors 

S\D 𝐷# 𝐷%
𝑠#
𝑠%
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Pr[s0 ,D0]= f ( y |H0 )dy
−∞

′τ

∫

Pr[s1,D1]= f ( y |H1)dy
′τ

∞

∫

Pr[s0 ,D1]= f ( y |H0 )dy
′τ

∞

∫

Pr[s1,D0]= f ( y |H1)dy
−∞

′τ

∫
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Gaussian Integrals 

τ

f (z) = 1

π
exp −z2( ) erf (τ ) = 2

π
e− z

2

dz
0

τ

∫

1
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Gaussian Integrals 

τ ′
Pr[s0 ,D1]= f ( y |H0 )dy

′τ

∞
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Pr[s1,D0]= f ( y |H1)dy
−∞

′τ

∫

n Let 𝑌~𝑁 𝜇, 𝜎: and define the random variable 𝑍 = <=>
:?

.  
Then 𝑍~𝑁 0, @A .  



Bayes Criterion

n Some errors may be more important than others! 
n Assume we know the cost associated with every decision 
n Assume we know the prior probabilities 𝜋# = Pr 𝐻# and 
𝜋% = Pr 𝐻%

n We can define the Bayes’ risk (or cost)

n Or

n



Bayes Criterion

n After some computations, we arrive at the criterion that we 
decide 𝐷# if 

n or

n Therefore the Bayes Decision is given by



Example 

n Assume 𝑠# = −𝑎 and 𝑠% = 𝑎.
n A priori probabilities 𝜋# = 0.2 and 𝜋% = 0.8
n Costs: 𝐶## = 𝐶%% = 0 and 𝐶#% = 1, 𝐶%# = 2
n Zero-mean Gaussian white noise



Neyman-Pearson (NP) Criterion

n What if neither costs nor prior probabilities are known?
n NP Criterion: Keep the False Alarm probability below 

some level 𝛼D

n and maximize the detection probability

n Constrained optimization problem: 

n where we can obtain 



Detection vs Estimation 

n Detection theory involves the selection among 
a finite number of possible hypotheses 

n Estimation theory involves the selection among 
a continuum of “hypotheses” 
¨ As the number of hypotheses in detection theory 

grows larger, the distinction between detection and 
estimation becomes blurred.

n



Estimator Properties 

n Suppose that we want to estimate the value of a parameter 
𝛼 using the observations 𝑦%,… , 𝑦F using an estimator G𝛼F
which is a function of the observations.  Then, it may be 
desirable that the estimator (which is a random variable) 
may have the following properties

n Unbiased

n Consistent

n Invariant under transformation. Let the function 𝑔(𝛼), then 



Estimator Properties 

n Sufficient: Intuitively, this property states that the estimator 
utilizes all available information.

n Minimum Variance: 

¨ The smaller the variance, the better the quality of the estimator. 
¨ Cramer-Rao lower bound 

where 𝐹(𝛼) is the Fisher Information 

F(α ) = −E ∂2

∂α 2 ln f ( y1,!, yn;α )
⎡

⎣
⎢

⎤

⎦
⎥



Estimator Properties 

n Efficient estimators, let two unbiased estimators G𝛼F# and G𝛼F%
with G𝛼F# being the one with the lowest variance.  Then 
efficiency is defined as 

n Asymptotically Efficient 

n Asymptotically Normal 
¨ G𝛼F approaches a normal distribution as 𝑛 goes to infinity 



Maximum A Posteriori (MAP) 
Estimation 

n We want to estimate the value of a parameter 𝛼
using the observations 𝑦%, … , 𝑦F and the a priori 
distribution 𝑓(𝛼).

n MAP Estimator: Maximize the pdf 𝑓(𝛼|𝐲) where 
𝐲 = [𝑦%, … , 𝑦F].

n Using Bayes’ rule 

n Thus



Example

n Assume that 
¨ the observations 𝑦%,… , 𝑦F are i.i.d. taken from a 

Gaussian distribution with an unknown mean 𝜇 and 
known variance 𝜎:, 𝑦Q~𝑁(𝜇, 𝜎:), 𝑖 = 1,… , 𝑛. 

¨ The mean 𝜇 is also a random variable 𝜇~𝑁(𝑚%, 𝛽:)
n MAP Estimator:



Example

n Set the derivative equal to 0

d
dµ

1

2πσ 2( )n/2
exp − 1

2σ 2 yi − µ( )2
i=1

n

∑ − 1
2β 2

(µ −m1)
2⎛

⎝⎜
⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0



Example

n Estimator properties
¨ If 𝜇 is held constant, then

¨ But the expected value of the sample mean 𝐸 V𝑦 𝜇 = 𝜇

¨ Therefore the estimator is biased, but asymptotically 
unbiased



Bayes’ Estimator 

n We want to estimate the value of a parameter 𝛼 using 
¨ the observations 𝐲 = [𝑦%,… , 𝑦F]
¨ the a priori distribution 𝑓(𝛼).
¨ the Bayes’ cost (loss) which is a function of the error 
𝑎W = 𝛼 − G𝛼

n Bayes’ Estimator:

n Various cost functions 

C α̂ ,α( )= 0 if |ae |≤Δ/2

1 if |ae |>Δ/2

⎧
⎨
⎪

⎩⎪



Bayes’ Estimator 

n Mean Square Error (MSE)
¨ 𝐶 G𝛼, 𝛼 = 𝛼W: = 𝛼 − G𝛼 :

n Differentiate with respect to G𝛼

E C α̂ ,α( )⎡⎣ ⎤⎦ = α − α̂( )2 f (α | y)dα
−∞

∞

∫



Bayes’ Estimator 

n Using Bayes’ Rule 

α̂ MSE = α f (α | y)dα
−∞

∞

∫ = E α | y⎡⎣ ⎤⎦

f (α | y) = f (y |α ) f (α )
f (y)

= f (y |α ) f (α )

f (y |α ) f (α )dα
−∞

∞

∫
n Which results to



Example

n Assume that 
¨ the observations 𝑦%,… , 𝑦F are i.i.d. taken from a 

Gaussian distribution with an unknown mean 𝜇 and 
known variance 𝜎:, 𝑦Q~𝑁(𝜇, 𝜎:), 𝑖 = 1,… , 𝑛. 

¨ The mean 𝜇 is also a random variable 𝜇~𝑁(𝑚%, 𝛽:)
n MSE Estimator:

with
µ̂MSE = µ f (µ | y)dµ

−∞

∞

∫ = E µ | y⎡⎣ ⎤⎦

f y |µ( ) = 1

2πσ 2( )n/2
exp − 1

2σ 2 yi − µ( )2
i=1

n

∑⎛
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Example

n Using Bayes’ rule again we obtain

Where

so 

f µ | y( ) = 1

2πγ 2
exp − (µ − γ 2ω )2

2γ 2
⎛
⎝⎜

⎞
⎠⎟

y = 1
n

yi
i=1

n

∑

⇒ µ̂MSE =
β 2 y +σ 2m1 / n
β 2 +σ 2 / n



Maximum Likelihood (ML) Estimator 

n We want to estimate the value of a parameter 𝛼 using 
¨ the observations 𝐲 = [𝑦%,… , 𝑦F]
¨ NO a priori distribution 𝑓 𝛼 and NO cost function are 

available.
n ML Estimator: Maximize the likelihood distribution 

n Assuming independent observations each with pmf 𝑓 𝑦Q α



Relation between ML and MAP 
Estimator 

n Again use Bayes’ rule and taking logarithms

n For the minimization, take derivatives with respect to 𝛼

ln f (α | y) = ln f (y |α )+ ln f (α )− ln f (y)



Example

n Assume that 
¨ the observations 𝑦%,… , 𝑦F are i.i.d. taken from a 

Gaussian distribution with an unknown mean 𝜇 and 
known variance 𝜎:, 𝑦Q~𝑁(𝜇, 𝜎:), 𝑖 = 1,… , 𝑛. 

¨ The mean 𝜇 is also a random variable 𝜇~𝑁(𝑚%, 𝛽:)
n ML Estimator:

Set the derivative with respect to 𝜇 equal to 0.

f y |µ( ) = 1

2πσ 2( )n/2
exp − 1

2σ 2 yi − µ( )2
i=1
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