ECE801

Monitoring and Estimation

Linear Multi-Parameter Systems

Instructor: Christos Panayiotou

Outline

- Least Squares
- Weighted Least Squares
- Maximum Likelihood
- Maximum A Priori (MAP) estimator
- Recursive Least Squares

Simple Example

- Assume that you run an experiment and know that the model is given by

$$
y=g(x)=a x+b
$$

- You run n experiments with inputs $x_{1}, x_{2}, \ldots, x_{n}$ and measure the outputs $y_{1}, y_{2}, \ldots, y_{n}$.
- Solution
\square This is an overdetermined system with n equations and 2 unknowns.
- Define the mean square error (MSE) criterion
- Determine the parameters a, b that minimize MSE

Simple Example

- Compute the partial derivatives with respect to the parameters a, b and set them to zero.
- Let $X_{1}=\sum_{i=1}^{n} x_{i}, X_{2}=\sum_{i=1}^{n} x_{i}^{2} \quad Y_{1}=\sum_{i=1}^{n} y_{i}, Y_{2}=\sum_{i=1}^{n} x_{i} y_{i}$, we get

$$
\left.\begin{array}{r}
Y_{2}-a X_{2}-b X_{1}=0 \\
Y_{1}-a X_{1}-n b=0
\end{array}\right\}
$$

- Line LS

In vector form...

■ Assume that $Y=\left[y_{1}, \ldots, y_{n}\right]^{T}, A=[a, b]^{T}, W$ is the $n-$ dimentional noise (error) vector and

$$
H=\left[\begin{array}{cc}
x_{1} & 1 \\
\ldots & \ldots \\
x_{n} & 1
\end{array}\right]
$$

- Thus, in vector form the model is given by $Y=H A+W$
- The Least Squares objective is given by
- To minimize $J(A)$ we need to find the gradient with respect to A and make it equal to 0 ; i.e., $\nabla J(A)=0$

Vector gradients

$$
\begin{aligned}
& \nabla_{X}\left\{Y^{T} B X\right\}=B^{T} Y \\
& \nabla_{X}\left\{\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right\}=B^{T} Y \\
& \nabla_{X}\left\{X^{T} B Y\right\}=B^{T} Y \quad \nabla_{X}\left\{X^{T} B X\right\}=\left(B+B^{T}\right) X
\end{aligned}
$$

- So, we obtain the gradient (with respect to A),

$$
J(A)=Y^{T} Y-Y^{T} H A-A^{T} H^{T} Y+A^{T} H^{T} H A
$$

- assuming $\left(H^{T} H\right)$ is invertible
- Line LS2

Weighted Least Squares

- Let the Weighted Least Squares objective given by
- where Q is a positive definite symmetric weight matrix
- Again to minimize $J(A)$ we need to find the gradient with respect to A and make it equal to 0 ; i.e., $\nabla J(A)=0$

Weighted Least Squares

The gradient (with respect to A),

- assuming ($H^{T} Q H$) is invertible

Multi-Parameter Systems

- Assume that the system is a multi parameter (K parameters) linear system
- We run n experiments, $i=1, \ldots, n$ where for the i thexperiment the input, $x_{i}=\left[x_{1}, \ldots, x_{K}\right]^{T}$ and measure the outputs $Y^{T}=\left[y_{1}, y_{2}, \ldots, y_{n}\right]$.
- In vector form, all outputs are given by.
where x_{i} is the i th row of H.
- Define the mean square error (MSE) criterion

Multi-Parameter System

- So, we obtain the gradient (with respect to A),
- assuming $\left(H^{T} H\right)$ is invertible
- Line LS2

Maximum Likelihood

- Again assume a linear model where the noise W is Gaussian $\mathrm{W} \sim N\left(\mathbf{0}, \boldsymbol{R}_{n}\right)$.

$$
Y=H A+W
$$

■ Thus, the conditional pdf $f(Y \mid A)$ (likelihood) is Gaussian

$$
f(Y \mid A)=\frac{1}{\sqrt{(2 \pi)^{n}\left|\boldsymbol{R}_{\boldsymbol{n}}\right|}} \exp \left(-\frac{1}{2}(Y-H A)^{T} \boldsymbol{R}_{n}^{-1}(Y-H A)\right)
$$

The logarithm is given by
$\ln (f(Y \mid A))=-\frac{1}{2}\left(Y^{T} \mathbf{R}_{n}^{-1} Y-Y^{T} \mathbf{R}_{n}^{-1} H A-A^{T} H^{T} \mathbf{R}_{n}^{-1} Y+A^{T} H^{T} \mathbf{R}_{n}^{-1} H A+\ln \left((2 \pi)^{n}\left|\mathbf{R}_{n}\right|\right)\right)$
$\nabla \ln (f(Y \mid A))=$

Maximum Likelihood

- Unbiasedness

$$
E[Y]=E[H A+W]=H A
$$

- Therefore
$E\left[\hat{A}_{M L}\right]=$
- Define the error $A_{e}=A-\hat{A}_{M L}$, and note that $E\left[A_{e}\right]=0$
$A_{e}=$
- And error covariance

MAP Estimator

- Again assume a linear model where the noise W is Gaussian $\mathrm{W} \sim N\left(\mathbf{0}, \boldsymbol{R}_{n}\right)$.

$$
Y=H A+W
$$

- Thus, the conditional pdf $f(Y \mid A)$ (likelihood) is Gaussian

$$
f(Y \mid A)=\frac{1}{\sqrt{(2 \pi)^{n}\left|\boldsymbol{R}_{\boldsymbol{n}}\right|}} \exp \left(-\frac{1}{2}(Y-H A)^{T} \boldsymbol{R}_{n}^{-1}(Y-H A)\right)
$$

- And the prior distribution of A is given by

Where k is the dimension of A which is normally distributed with mean μ_{A} and variance Σ_{A}.

MAP Estimator

- Recall that

$$
\hat{A}_{M A P}=\max \{f(\mathbf{y} \mid A) f(A)\}
$$

- Thus the overall function to be maximized is

The logarithm is given by
$\nabla \ln (f(Y \mid A) f(A))=$

MAP Estimator

- Collecting together all terms proportional to A.

■ Therefore

■ Next we investigate the unbiasedness of the estimator

Example

- Let a system with 2 inputs and 2 outputs,

$$
y_{1}=2 x_{1}+x_{2}+n_{1}, \quad y_{2}=-2 x_{1}+x_{2}+n_{2}
$$

- The inputs are Gaussian

$$
X=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \sim N\left(\mu_{X}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \Sigma_{X}=\left[\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right]\right)
$$

- and the outputs are corrupted by Gaussian noise \boldsymbol{n}.

$$
W=\left[\begin{array}{l}
n_{1} \\
n_{2}
\end{array}\right] \sim N\left(\mu_{n}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \mathbf{R}_{n}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\right)
$$

Example

- In vector form

$$
Y=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
n_{1} \\
n_{2}
\end{array}\right]=H X+W
$$

■ Next we need to compute the inverse matrices

- So

Example

- For the MAP estimator we need

$$
\hat{A}_{M A P}=\left(H^{T} \mathbf{R}_{n}^{-1} H+\Sigma_{X}^{-1}\right)^{-1}\left(H^{T} \mathbf{R}_{n}^{-1} Y+\Sigma_{X}^{-1} \mu_{X}\right)
$$

