
ECE801 
Monitoring and Estimation 

Kalman Filter 

Instructor: Christos Panayiotou 



Outline 

n 1-D Kalman Filter 



n Assume a vehicle that moves on a straight line with 
constant velocity 𝑣.

n State variable is the position 𝑥 and the dynamics of the 
system are given by

n So

n But, often there are disturbances   

Vehicle Tracking Problem

!x = dx
dt

= v with initial condition  x(0) = x0

x(t) = v dτ
0

t

∫ = x0 + vt



n In discrete time, 

n Where 𝑥# = 𝑥 𝑘Δ and Δ is the sampling interval
n Thus 

n Again, what if there are disturbances and  velocity is not 
constant? 

Vehicle Tracking Problem

xk+1 − xk
Δ

= v

xk+1 = xk + vΔ xk+1 = x0 + kvΔ



n Assume that every Δ seconds we get a (noisy) 
measurement of the position, 

where 𝑤# is the noise..

n If for some 𝑘 the noise 𝑤# is large, then our sensor 
measurement will be of low quality and will contain 
significant error.

n Can we use available information to reduce the sensor 
measurement error?
¨ What information?
¨ How?

Vehicle Tracking Problem

yk = xk + wk



n What information?
n Velocity is constant.

¨ The velocity should not change significantly from one time instant 
to the next!

n We have an estimate of where the vehicle was up to the 
previous time instant 𝑘 − 1, thus assuming fast enough 
sampling, the vehicle it cannot be “very far” from the 
previous position.

n Notation
¨ *𝑥#,#,- Predicted position before measurement 𝑘 is received
¨ *𝑥#,# Estimated position after measurement 𝑘 is consider
¨ *𝑣#,#,- Predicted velocity before measurement 𝑘 is received
¨ *𝑣#,# Estimated velocity after measurement 𝑘 is considered

Vehicle Tracking Problem



n At time 𝑘 − 1
¨ We have the predicted position and velocity *𝑥#,-,#,- and 
*𝑣#,-,#,-

n Use the model to predict the position and velocity of the 
vehicle
¨ Position is predicted through the model

¨ Velocity is constant, thus

n Then use the new measurement to “correct” the predicted 
values 

Vehicle Tracking Problem

v̂k ,k−1 = v̂k−1,k−1

x̂k ,k−1 = x̂k−1,k−1 + Δv̂k−1,k−1



n At time 𝑘
¨ We have the predicted position and velocity *𝑥#,#,- and 
*𝑣#,#,-

¨ And a new measurement of the position 𝑦/
n Recall the recursive sample average

¨ Position update

¨ Velocity update

Vehicle Tracking Problem

v̂k ,k = v̂k ,k−1 +
β
Δ
yk − x̂k ,k−1( )

x̂k ,k = x̂k ,k−1 +α yk − x̂k ,k−1( )

xk+1 = xk +
1
n+1

xk+1 − xk( ) Weights α and β depend 
on our confidence on the 
sensor measurement 

tracking.m

../Matlab/tracking.m


n In vector form…
¨ Let 𝑥- = 𝑥 and 𝑥0 = 𝑣
¨ Then the model in vector form is
¨

¨ The Measurement 

Vehicle Tracking Problem

y(k) = 1 0⎡
⎣

⎤
⎦ X (k)+ w(k) = CX (k)+ w(k)

X k +1( ) = x1(k +1)

x2(k +1)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1 Δ

0 1
⎡

⎣
⎢

⎤

⎦
⎥

x1(k)

x2(k)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= AX (k)



n Let 1𝑋# be the predicted state before measurement 𝑘 is 
considered and 3𝑋# be the estimated position after the 𝑘th
measurement, then 

and

Vehicle Tracking Problem

!X k +1( ) = !x1(k +1)
!x2(k +1)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1 Δ

0 1
⎡

⎣
⎢

⎤

⎦
⎥

x̂1(k)

x̂2(k)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= AX̂ (k)

X̂ k( ) = x̂1(k)

x̂2(k)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
!x1(k)
!x2(k)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ α

β / Δ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
y(k)−C

!x1(k)
!x2(k)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= !X (k)+ K y(k)−C !X (k)( )



n Assume a vehicle that moves on a straight line with 
constant acceleration 𝑎.

n In this case, the state variables are the position 𝑥 the 
velocity 𝑣 and the acceleration 𝑎 and the dynamics are 
given by

Vehicle Tracking: Constant 
Acceleration

!x = dx
dt

= v with initial condition  x(0) = x0

!v = dv
dt

=α with initial condition  v(0) = v0



n In discrete time, 

n Where 𝑥# = 𝑥 𝑘Δ and Δ is the sampling interval
n Thus, the model in vector form  

Vehicle Tracking: Constant 
Acceleration

xk+1 − xk
Δ

= v

X (k +1) =

x1(k +1)

x2(k +1)

x3(k +1)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
x(k +1)
v(k +1)
a(k +1)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
1 Δ Δ2 / 2
0 1 Δ
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
X (k)

vk+1 − vk
Δ

=α



n Assume that every Δ seconds we get a (noisy) 
measurement of the position, 

where 𝐶 = 1 0 0 , and 𝑤# is the noise.

n Let 1𝑋# be the predicted state before measurement 𝑘 is 
considered and 3𝑋# be the estimated position after the 𝑘th
measurement, then 

Vehicle Tracking: Constant 
Acceleration 

yk = xk + wk = CXk + wk



Vehicle Tracking: Constant 
Acceleration 

!X k +1( ) =
!x1(k +1)
!x2(k +1)
!x3(k +1)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
1 Δ Δ2 / 2
0 1 Δ
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x̂1(k)

x̂2(k)

x̂3(k)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= AX̂ (k)

X̂ k( ) =
x̂1(k)

x̂2(k)

x̂3(k)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

!x1(k)
!x2(k)
!x3(k)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+
α

β / Δ
γ / Δ2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

y(k)−C

!x1(k)
!x2(k)
!x3(k)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= !X (k)+ K y(k)−C !X (k)( )
tracking2.m
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n The state estimate update included the Kalman Gain 𝐾
and we assumed it to be fixed and somehow given to us 

n How can we determine the value of the Kalman gain? 
n Is it constant, or does it also depend on the data? 

n Recall the sample mean again

n Let 𝑟# be the uncertainty in the latest measurement 𝑥#9-
n Let 𝑃#,#,- be the (estimated) uncertainty of the �̅�#

Kalman Gain

xk+1 = xk +
1
k +1

xk+1 − xk( ) = xk + Kk xk+1 − xk( )

Weight that depends on the 
confidence we give to the 
previous estimate �̅�! and 
the latest measurement 

0 ≤ Kk ≤1



n Let us use the previous notation that we had established 
for the Kalman Filter 
¨ 𝑦# Latest measurement   
¨ *𝑥#,#,- Predicted state before measurement 𝑘 is received
¨ *𝑥#,# Estimated state after measurement 𝑘 is consider

¨ 𝑟# is the uncertainty in the latest measurement y#
¨ 𝑃#,#,- be the (estimated) uncertainty of the *𝑥#,#,-
¨ 𝑃#,# be the (estimated) uncertainty of the *𝑥#,#

Kalman Gain

Kk =
Pk ,k−1

Pk ,k−1 + rk

Uncertainty of the prior 
estimate

x̂k ,k = x̂k ,k−1 + Kk yk − x̂k ,k−1( )

Uncertainty (variance) of 
the measurement



n The Kalman gain determines the weight of a new 
measurement  

n For the sample average let us assume i.i.d. random 
numbers with some mean 𝜇 and variance 𝜎0

n Let 𝑟# = 𝜎0 while the variance of the estimate using 𝑘 − 1
samples is 𝑃#,#,- = "

#$"𝜎
0.

n Therefore,  

Kalman Gain

Kn =
Pk ,k−1

Pk ,k−1 + rk

Which is the gain used in 
the recursive sample mean 
estimate 

0 ≤ Kn ≤1
x̂k ,k = x̂k ,k−1 + Kk yk − x̂k ,k−1( )

= (1− Kk )x̂k ,k−1 + Kk yk

=
1
n−1σ

2

1
n−1σ

2 +σ 2 =
1
n



n How does the variance of the estimate change?
n The variance of the estimate using 𝑘 − 1 samples is 
𝑃#,#,- = "

%$"𝜎
0

n The variance after 𝑘 samples is 𝑃#,# = "
%𝜎

0

n Therefore,  

n Also, before the measurement is considered,  

Kalman Gain

Pk ,k = (1− Kk )Pk ,k−1 = 1− 1
k

⎛
⎝⎜

⎞
⎠⎟
σ 2

k −1
= σ 2

k

Pk ,k−1 = Pk−1,k−1



n Initialize: *𝑥?,?, 𝑃?,? = 𝑟 = 𝜎0

n State prediction 

n Covariance prediction 

n Kalman Gain Computation 

n State Update 

n Covariance Update 

Kalman Filter Algorithm

Pk ,k = (1− Kk )Pk ,k−1

Pk ,k−1 = Pk−1,k−1

x̂k ,k−1 = x̂k−1,k−1 + fk−1

x̂k ,k = x̂k ,k−1 + Kk yk − x̂k ,k−1( )
Kk =

Pk ,k−1
Pk ,k−1 + rk

Due to the dynamics or it is 
0 if constant parameter 



n Recall the state 𝑥- = 𝑥 and 𝑥0 = 𝑣 and 

n Thus the state prediction 

n The variance of the position

n Kalman Gain Computation 

n Position Update 

n Position variance Update 

Constant speed vehicle tracking 
problem

pk ,k = (1− Kk )pk ,k−1

pk ,k−1 = pk−1,k−1

X̂ k ,k−1 = AX̂k−1,k−1

x̂k ,k = x̂k ,k−1 + Kk yk − x̂k ,k−1( )
Kk =

pk ,k−1
pk ,k−1 + rk

X k( ) = x1(k)

x2(k)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1 Δ

0 1
⎡

⎣
⎢

⎤

⎦
⎥

x1(k −1)

x2(k −1)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= AX (k −1)

No randomness  
involved



n In vector form…
¨ Let 𝑥- = 𝑥 and 𝑥0 = 𝑣
¨ Then the model in vector form is
¨

¨ The Measurement 

Vehicle Tracking Problem

y(k) = 1 0⎡
⎣

⎤
⎦ X (k)+ w(k) = CX (k)+ w(k)

X k +1( ) = x1(k +1)

x2(k +1)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1 Δ

0 1
⎡

⎣
⎢

⎤

⎦
⎥

x1(k)

x2(k)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= AX (k)



n Initialize: *𝑥?,?, 𝑃?,? = 𝑟 = 𝜎0

n State prediction 

n Covariance prediction 

n Kalman Gain Computation 

n State Update 

n Covariance Update 

Constant speed vehicle tracking 
problem

Pk ,k = (1− Kk )Pk ,k−1

Pk ,k−1 = Pk−1,k−1

x̂k ,k−1 = x̂k−1,k−1 + fk−1

x̂k ,k = x̂k ,k−1 + Kk yk − x̂k ,k−1( )
Kk =

Pk ,k−1
Pk ,k−1 + rk

Due to the dynamics or it is 
0 if constant parameter 


