ECE801 Monitoring and Estimation

Kalman Filter

Instructor: Christos Panayiotou

Outline

- 1-D Kalman Filter

Vehicle Tracking Problem

- Assume a vehicle that moves on a straight line with constant velocity v.
- State variable is the position x and the dynamics of the system are given by
- So

$$
\dot{x}=\frac{d x}{d t}=v \quad \text { with initial condition } x(0)=x_{0}
$$

$$
x(t)=\int_{0}^{t} v d \tau=x_{0}+v t
$$

- But, often there are disturbances

Vehicle Tracking Problem

- In discrete time,

$$
\frac{x_{k+1}-x_{k}}{\Delta}=v
$$

- Where $x_{k}=x(k \Delta)$ and Δ is the sampling interval
- Thus

$$
x_{k+1}=x_{k}+v \Delta \quad x_{k+1}=x_{0}+k v \Delta
$$

- Again, what if there are disturbances and velocity is not constant?

Vehicle Tracking Problem

- Assume that every Δ seconds we get a (noisy) measurement of the position,

$$
y_{k}=x_{k}+w_{k}
$$

where w_{k} is the noise..

- If for some k the noise w_{k} is large, then our sensor measurement will be of low quality and will contain significant error.
- Can we use available information to reduce the sensor measurement error?
\square What information?
\square How?

Vehicle Tracking Problem

- What information?
- Velocity is constant.
\square The velocity should not change significantly from one time instant to the next!
- We have an estimate of where the vehicle was up to the previous time instant $k-1$, thus assuming fast enough sampling, the vehicle it cannot be "very far" from the previous position.
- Notation
$\square \hat{x}_{k, k-1}$ Predicted position before measurement k is received
$\square \hat{x}_{k, k} \quad$ Estimated position after measurement k is consider
$\square \hat{v}_{k, k-1}$ Predicted velocity before measurement k is received
$\square \hat{v}_{k, k} \quad$ Estimated velocity after measurement k is considered

Vehicle Tracking Problem

- At time $k-1$
\square We have the predicted position and velocity $\hat{x}_{k-1, k-1}$ and $\hat{v}_{k-1, k-1}$
- Use the model to predict the position and velocity of the vehicle
\square Position is predicted through the model

$$
\hat{\hat{x}}_{k, k-1}=\hat{x}_{k-1, k-1}+\Delta \hat{\hat{v}}_{k-1, k-1}
$$

\square Velocity is constant, thus

$$
\hat{v}_{k, k-1}=\hat{v}_{k-1, k-1}
$$

- Then use the new measurement to "correct" the predicted values

Vehicle Tracking Problem

- At time k
\square We have the predicted position and velocity $\hat{x}_{k, k-1}$ and $\hat{v}_{k, k-1}$
\square And a new measurement of the position y_{n}
- Recall the recursive sample average

$$
\bar{x}_{k+1}=\bar{x}_{k}+\frac{1}{n+1}\left(x_{k+1}-\bar{x}_{k}\right)
$$

\square Position update

Weights α and β depend on our confidence on the sensor measurement

$$
\hat{x}_{k, k}=\hat{x}_{k, k-1}+\alpha\left(y_{k}-\hat{x}_{k, k-1}\right)
$$

\square Velocity update

$$
\hat{v}_{k, k}=\hat{v}_{k, k-1}+\frac{\beta}{\Delta}\left(y_{k}-\hat{x}_{k, k-1}\right)
$$

Vehicle Tracking Problem

- In vector form...
\square Let $x_{1}=x$ and $x_{2}=v$
\square Then the model in vector form is

$$
X(k+1)=\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1)
\end{array}\right]=\left[\begin{array}{ll}
1 & \Delta \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]=A X(k)
$$

\square The Measurement

$$
y(k)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] X(k)+w(k)=C X(k)+w(k)
$$

Vehicle Tracking Problem

- Let \tilde{X}_{k} be the predicted state before measurement k is considered and \widehat{X}_{k} be the estimated position after the k th measurement, then

$$
\tilde{X}(k+1)=\left[\begin{array}{c}
\tilde{x}_{1}(k+1) \\
\tilde{x}_{2}(k+1)
\end{array}\right]=\left[\begin{array}{cc}
1 & \Delta \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
\hat{x}_{1}(k) \\
\hat{x}_{2}(k)
\end{array}\right]=A \hat{X}(k)
$$

and

$$
\begin{aligned}
\hat{X}(k) & =\left[\begin{array}{l}
\hat{x}_{1}(k) \\
\hat{x}_{2}(k)
\end{array}\right]=\left[\begin{array}{c}
\tilde{x}_{1}(k) \\
\tilde{x}_{2}(k)
\end{array}\right]+\left[\begin{array}{c}
\alpha \\
\beta / \Delta
\end{array}\right]\left(y(k)-C\left[\begin{array}{c}
\tilde{x}_{1}(k) \\
\tilde{x}_{2}(k)
\end{array}\right]\right) \\
& =\tilde{X}(k)+K(y(k)-C \tilde{X}(k))
\end{aligned}
$$

Vehicle Tracking: Constant Acceleration

- Assume a vehicle that moves on a straight line with constant acceleration a.
- In this case, the state variables are the position x the velocity v and the acceleration a and the dynamics are given by

$$
\begin{array}{ll}
\dot{x}=\frac{d x}{d t}=v & \text { with initial condition } x(0)=x_{0} \\
\dot{v}=\frac{d v}{d t}=\alpha & \text { with initial condition } v(0)=v_{0}
\end{array}
$$

Vehicle Tracking: Constant Acceleration

- In discrete time,

$$
\frac{x_{k+1}-x_{k}}{\Delta}=v \quad \frac{v_{k+1}-v_{k}}{\Delta}=\alpha
$$

- Where $x_{k}=x(k \Delta)$ and Δ is the sampling interval
- Thus, the model in vector form

$$
X(k+1)=\left[\begin{array}{c}
x_{1}(k+1) \\
x_{2}(k+1) \\
x_{3}(k+1)
\end{array}\right]=\left[\begin{array}{c}
x(k+1) \\
v(k+1) \\
a(k+1)
\end{array}\right]=\left[\begin{array}{ccc}
1 & \Delta & \Delta^{2} / 2 \\
0 & 1 & \Delta \\
0 & 0 & 1
\end{array}\right] X(k)
$$

Vehicle Tracking: Constant Acceleration

- Assume that every Δ seconds we get a (noisy) measurement of the position,

$$
y_{k}=x_{k}+w_{k}=C X_{k}+w_{k}
$$

where $C=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$, and w_{k} is the noise.

- Let \tilde{X}_{k} be the predicted state before measurement k is considered and \widehat{X}_{k} be the estimated position after the k th measurement, then

Vehicle Tracking: Constant Acceleration

$$
\begin{aligned}
\tilde{X}(k+1) & =\left[\begin{array}{l}
\tilde{x}_{1}(k+1) \\
\tilde{x}_{2}(k+1) \\
\tilde{x}_{3}(k+1)
\end{array}\right]=\left[\begin{array}{ccc}
1 & \Delta & \Delta^{2} / 2 \\
0 & 1 & \Delta \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\hat{x}_{1}(k) \\
\hat{x}_{2}(k) \\
\hat{x}_{3}(k)
\end{array}\right]=A \hat{X}(k) \\
\hat{X}(k) & =\left[\begin{array}{l}
\hat{x}_{1}(k) \\
\hat{x}_{2}(k) \\
\hat{x}_{3}(k)
\end{array}\right]=\left[\begin{array}{l}
\tilde{x}_{1}(k) \\
\tilde{x}_{2}(k) \\
\tilde{x}_{3}(k)
\end{array}\right]+\left[\begin{array}{c}
\alpha \\
\beta / \Delta \\
\gamma / \Delta^{2}
\end{array}\right]\left(y(k)-C\left[\begin{array}{c}
\tilde{x}_{1}(k) \\
\tilde{x}_{2}(k) \\
\tilde{x}_{3}(k)
\end{array}\right]\right) \\
& =\tilde{X}(k)+K(y(k)-C \tilde{X}(k))
\end{aligned}
$$

Kalman Gain

- The state estimate update included the Kalman Gain K and we assumed it to be fixed and somehow given to us
- How can we determine the value of the Kalman gain?
- Is it constant, or does it also depend on the data?
- Recall the sample mean again

Weight that depends on the confidence we give to the previous estimate \bar{x}_{k} and the latest measurement

$$
\bar{x}_{k+1}=\bar{x}_{k}+\frac{1}{k+1}\left(x_{k+1}-\bar{x}_{k}\right)=\bar{x}_{k}+K_{k}\left(x_{k+1}-\bar{x}_{k}\right)
$$

- Let r_{k} be the uncertainty in the latest measurement x_{k+1}
- Let $P_{k, k-1}$ be the (estimated) uncertainty of the \bar{x}_{k}

$$
0 \leq K_{k} \leq 1
$$

Kalman Gain

- Let us use the previous notation that we had established for the Kalman Filter
$\square y_{k}$ Latest measurement
$\square \hat{x}_{k, k-1}$ Predicted state before measurement k is received
$\square \hat{x}_{k, k} \quad$ Estimated state after measurement k is consider
$\square r_{k}$ is the uncertainty in the latest measurement y_{k}
$\square P_{k, k-1}$ be the (estimated) uncertainty of the $\hat{x}_{k, k-1}$
$\square P_{k, k}$ be the (estimated) uncertainty of the $\hat{x}_{k, k}$

$$
\hat{x}_{k, k}=\hat{x}_{k, k-1}+K_{k}\left(y_{k}-\hat{x}_{k, k-1}\right)
$$

Uncertainty of the prior

$$
K_{k}=\frac{P_{k, k-1}}{P_{k, k-1}+r_{k}} \quad \begin{aligned}
& \text { estimate } \\
& \hline \begin{array}{l}
\text { Uncertainty (variance) of } \\
\text { the measurement }
\end{array} \\
& \hline
\end{aligned}
$$

Kalman Gain

- The Kalman gain determines the weight of a new measurement

$$
\begin{array}{rlr}
\hat{x}_{k, k} & =\hat{x}_{k, k-1}+K_{k}\left(y_{k}-\hat{x}_{k, k-1}\right) & \\
& =\left(1-K_{k}\right) \hat{x}_{k, k-1}+K_{k} y_{k} & 0 \leq K_{n} \leq 1
\end{array}
$$

- For the sample average let us assume i.i.d. random numbers with some mean μ and variance σ^{2}
- Let $r_{k}=\sigma^{2}$ while the variance of the estimate using $k-1$ samples is $P_{k, k-1}=\frac{1}{n-1} \sigma^{2}$.
- Therefore,

$$
K_{n}=\frac{P_{k, k-1}}{P_{k, k-1}+r_{k}}=\frac{\frac{1}{n-1} \sigma^{2}}{\frac{1}{n-1} \sigma^{2}+\sigma^{2}}=\frac{1}{n}
$$

Which is the gain used in the recursive sample mean estimate

Kalman Gain

- How does the variance of the estimate change?
- The variance of the estimate using $k-1$ samples is $P_{k, k-1}=\frac{1}{k-1} \sigma^{2}$
- The variance after k samples is $P_{k, k}=\frac{1}{k} \sigma^{2}$
- Therefore,

$$
P_{k, k}=\left(1-K_{k}\right) P_{k, k-1}=\left(1-\frac{1}{k}\right) \frac{\sigma^{2}}{k-1}=\frac{\sigma^{2}}{k}
$$

- Also, before the measurement is considered,

$$
P_{k, k-1}=P_{k-1, k-1}
$$

Kalman Filter Algorithm

■ Initialize: $\hat{x}_{0,0}, P_{0,0}=r=\sigma^{2}$

Due to the dynamics or it is 0 if constant parameter

- State prediction $\quad \hat{x}_{k, k-1}=\hat{x}_{k-1, k-1}+f_{k-1}$
- Covariance prediction $\quad P_{k, k-1}=P_{k-1, k-1}$
- Kalman Gain Computation $\quad K_{k}=\frac{P_{k, k-1}}{P_{k, k-1}+r_{k}}$
- State Update

$$
\hat{x}_{k, k}=\hat{x}_{k, k-1}+K_{k}\left(y_{k}-\hat{x}_{k, k-1}\right)
$$

- Covariance Update

$$
P_{k, k}=\left(1-K_{k}\right) P_{k, k-1}
$$

Constant speed vehicle tracking problem

- Recall the state $x_{1}=x$ and $x_{2}=v$ and

$$
X(k)=\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]=\left[\begin{array}{ll}
1 & \Delta \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(k-1) \\
x_{2}(k-1)
\end{array}\right]=A X(k-1)
$$

- Thus the state prediction $\quad \hat{X}_{k, k-1}=A \hat{X}_{k-1, k-1}$

No randomness involved

- The variance of the position $\quad p_{k, k-1}=p_{k-1, k-1}$
- Kalman Gain Computation $\quad K_{k}=\frac{p_{k, k-1}}{p_{k, k-1}+r_{k}}$
- Position Update $\quad \hat{x}_{k, k}=\hat{x}_{k, k-1}+K_{k}\left(y_{k}-\hat{x}_{k, k-1}\right)$
- Position variance Update $p_{k, k}=\left(1-K_{k}\right) p_{k, k-1}$

Vehicle Tracking Problem

- In vector form...
\square Let $x_{1}=x$ and $x_{2}=v$
\square Then the model in vector form is

$$
X(k+1)=\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1)
\end{array}\right]=\left[\begin{array}{ll}
1 & \Delta \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]=A X(k)
$$

\square The Measurement

$$
y(k)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] X(k)+w(k)=C X(k)+w(k)
$$

Constant speed vehicle tracking problem

■ Initialize: $\hat{x}_{0,0}, P_{0,0}=r=\sigma^{2}$

Due to the dynamics or it is 0 if constant parameter

- State prediction $\quad \hat{x}_{k, k-1}=\hat{x}_{k-1, k-1}+f_{k-1}$
- Covariance prediction $\quad P_{k, k-1}=P_{k-1, k-1}$
- Kalman Gain Computation $\quad K_{k}=\frac{P_{k, k-1}}{P_{k, k-1}+r_{k}}$
- State Update

$$
\hat{x}_{k, k}=\hat{x}_{k, k-1}+K_{k}\left(y_{k}-\hat{x}_{k, k-1}\right)
$$

- Covariance Update

$$
P_{k, k}=\left(1-K_{k}\right) P_{k, k-1}
$$

