

Deliverable 3.2 Geo-temporal graph

database solution

 AIDERS

The project has received funding from the

European Union Civil Protection Call for

proposals UCPM-2019-PP-AG for

prevention and preparedness projects in the

field of civil protection and marine pollution

under grant agreement – 873240– AIDERS.
Coordinator Name: Christos Panayiotou

Coordinator Email: christosp@ucy.ac.cy

Project Name: Real-time Artificial Intelligence for

DEcision support via RPAS data analyticS

Acronym: AIDERS

Grant Agreement: 873240

Project Website: http://www.kios.ucy.ac.cy/aiders/

Version: 1.0

Submission Date: 30/06/2021

Dissemination Level: Public

http://www.kios.ucy.ac.cy/aiders/

Contents
Executive Summary ... 0

1 Introduction ... 1

2 Databases .. 1

1 Greycat .. 1

Overview ... 1

Graph structure .. 1

Timeseries ... 2

Geobox .. 3

Server .. 3

2 MinIO ... 3

3 RESTful API ... 5

Endpoint example ... 6

Conclusion ... 7

Executive Summary
Machine Learning (ML) algorithms can provide some advanced solutions to support decision-

making by first responders, but the traceability and explainability of decisions of the learned

models may still require to keep track of as much information as possible. This challenge

therefore calls for the selection of an appropriate data management layer that can expose

spatiotemporal data streams to a wide diversity of ML algorithms, while offering a performant

and compact storage of acquired information.

This deliverable explains the architecture of the application and the technologies used

to manage the data gathered by all the sensors during a rescue mission. It will specifically focus

on the two retained databases, Greycat and MinIO, and the internal API we built to interface

the databases and the application.

1

1 Introduction
The choice of Greycat as the core storage technology for the AIDERS project results from the

needs of storing the numerous and large data retrieved from the multiple UAVs in operation,

for the purpose of traceability and explainability of field decisions. However, standalone

Greycat cannot satisfy all of the requirements expected for the project, so that we need to use

an additional database for storing multimedia content acquired by UAVs.

In this deliverable, we will therefore present the two database technologies—namely

Greycat and MinIO—which have been selected to store the artefacts delivered by UAVs. Then,

we will present the API we designed for the AIDERS application to interact easily with this

advanced storage backend.

2 Databases
1 Greycat

Overview

Greycat is the main database used as part of the project AIDERS. It aims at storing most of the

data collected by the UAVs along the rescue missions and support the execution of the different

ML/AI algorithms that will produce insights on the disasters.

Instead of interacting using a query language, like SQL, Greycat provides its own data

processing language. We can store and retrieve data that are organized in graphs composed

of nodes and edges, but also perform arithmetic operations and eventually implement machine

learning algorithms through the tensor objects and their associated operations that are

provided. The computations are more effective since the data is made directly by the database

engine instead of being fetched and processed by an external tool.

In the following section, we illustrate the application of some of Greycat features for our

specific use cases.

Graph structure
With the last versions of Greycat, we cannot use a dedicated base for each mission, so all the

missions are gathered in the same database in a root node.

The missions node knows about the UAVs that have operated, from where we can get

the collected data by each of them. Actually, it contains the geo-localisation data of the drone

over time as it is the most basic information to work with, but this scheme is easily expendable

to other data, like UAVs orientation and remaining battery.

2

The missions node also contains the widgets, used by the application to render the

rescue team insights, and their configuration. This way, end users do not have to recreate all

from scratch, if they want to replay or recover from an existing mission.

Timeseries

Greycat supports timeseries natively—i.e., a node can take different values at different points

of time. We can create a nodeTime object, then we can set its value at a specific timestamp,

and we can do this for any number of timestamps we want. Then, when accessing the

nodeTime, we can resolve it to a specific value depending on the requested time. There are

two ways to accomplish this:

 We can use a time context, so that all resolved nodeTime instances resolve to the value

defined at the closest time where a value exists,

 We can use loops that either list all values with their associated times, or sample a value

at time intervals.

3

In our application, we can use this feature to store telemetry data from the UAVs, like

geolocation, for example.

Geobox

In a similar manner, it is also possible to define a GeoIndex object. We can then assign values

to it at specific coordinates. It can then be resolved to any spatial coordinates, and the value

retrieved will be the one defined at the closest point from these coordinates.

Server
Greycat offers the possibility to expose internal functions as a RESTful API through the HTTP

protocol. This means that it is possible to deploy a remote instance of Greycat instead of

running a dedicated instance to the application. A practical example is the creation of a mission.

To do so, we simply use the following code:

@expose fn addMission(name: String): i64 {

 missions ?= Map<Mission>::new();

 if (missions.get(name) != null) {

 return 0;

 }

 var missionWidgets: Map<Widget> = Map<Widget>::new();

 var missionDrones: Map<Drone> = Map<Drone>::new();

 missions.set(name,

 Mission {

 name: name,

 widgets: node<Map<Widget>>::new(missionWidgets),

 drone: node<Map<Drone>>::new(missionDrones),

 currentDrone: 1

 });

 return 1;

}

Where, the @expose annotation is processed by Greycat to automatically expose the function

in the REST API. Then, we run Greycat to serve this function remotely that we can call it through

an HTTP request. For example, with curl, it would be as easy as executing:

curl -d '["New Mission"]' 'http://localhost:8080/addMission'

2 MinIO

MinIO is an object storage database that manages data as large objects (also known as BLOB)

and abstracts the different filesystems of the underlying storage devices. Using MinIO, we can

accommodate the long-term storage of any UAVs artifacts for each mission with a dedicated

4

bucket for each one, and then store the collected binary data inside the mission’s bucket. Even

though Greycat is able to store binary data, such as video captured from the UAVs, it is not

optimized to manage this kind of data. Therefore, we decided to use MinIO as a secondary

database that will take care of these data, but we do not store any other data than Greycat can

manage correctly itself.

A potential MinIO database hierarchy: the first level are buckets for each mission, then the different datafiles for each drone

that can represent videos, photos etc

MinIO provides several SDK for different languages, like Javascript, which is the one we use

in our case, but also C#/.NET, Python, Go, Java, which means this part of the code can be

easily reused in case of a rewrite of the application with a different technology. The database

was designed to work primarily with AWS S3 storage technology, as it aims to help building

hybrid cloud/local systems. Therefore, there is no difference in use between local and cloud

storage.

MinIO supports server-side and client-side replication of objects between source and

destination buckets. MinIO offers both active-passive (one-way) and active-active (two-way)

flavors of the following replication types that can be done automatically through the server

configuration or manually using an SDK or the MinIO client. These features allow us to either

switch from a local storage to AWS S3 or replicate the database to the Cloud to keep one or

several additional saves on a trustworthy Cloud provider.

MinIO can generate URL to query objects through HTTP requests. This is a useful

feature for us as we can feed, for instance, the video widget of the application which can then

stream a video accessible through this URL, even if the corresponding object has not been

completely updated yet, as in the case of a drone broadcasting the video stream of one of its

cameras.

MinIO can store multiple versions of a same object and then allow access to these

different versions. MinIO is therefore a highly relevant choice for the project, as it allows us to

manage large volume of local or streamed binary data.

5

3 RESTful API
We decided to interface the databases with a REST (REpresentational State Transfer) API,

which is a software architectural style that was created to guide the design and development

of the architecture for the Web.

REST abstracts the complexity of interacting with two conceptually different databases,

and allows the application to connect through a unique endpoint to non-local instances which

are uncoupled from the front application and can run on different environments than the one

which the application is running on, which can be incompatible with the different components

the API is made of—i.e., Greycat does not run on Windows at the time of publishing this

deliverable.

The API is composed of 3 parts: Express, which is a lightweight flexible Node.js web

application framework, and the 2 databases, Greycat and MinIO.

The Express server waits for requests coming from the application, then translates these

requests and forwards them to Greycat and/or MinIO depending on the necessary actions to

execute. The databases reply back to Express with the result of the requests and send them

back to the application.

Architecture overview of the AIDERS database solution.

We fetch the API through a set of URIs representing the resources to query, with different

HTTP methods depending on which action on these resources is wanted. For example:

 - A GET request on /missions returns the list of missions in the Greycat database;

 - A POST request on /missions adds a mission in the database;

- A PUT request on /missions/:id modifies the mission identified by the id;

- A DELETE request on /missions/:id removes the qualified mission from the databases

The same scheme applies to the widgets of the missions. This way we can create, get, modify,

and delete all kinds of data available for both Greycat and MinIO. Actually, the API also

6

provides access to one recorded video for each UAV, for testing purposes as the format of the

data can vary, as well as access and storage of their geo-localisation data.

This interface also simplifies our code from the front side. For instance, to create a

mission, the application sends a unique request to Express, then the server deals with the

responsibility to request Greycat to create an entry for the new mission and also to request

MinIO to create a new bucket for this mission as well.

Geo-localisation data from CSV files are loaded using the application. Since UAVs can

transmit and store different types of video streams, hence video files will be received by the

MinIO database according to the file type stored.

With this architecture, we can store larger amounts of raw data like video or image data

in the MinIO object storage, and store metadata that describes those in the greycat database,

that can be used by machine learning algorithms.

Endpoint example

POST /api/missions/{mission}/geoDrone

Returns a list of positions taken by a drone with their associated timestamps, for every drone

in a mission. Parameter: mission in the path is the ID of the mission we want to check

Reponse example:

[{

 "_type":"project.DroneRes",

 "droneID":2,

 "geopos":[{

 "_type":"core.Tuple",

 "x":{

 "_type":"core.time",

 "epoch":1592229964,

 "us":0

 },

 "y":{

 "_type":"geo.geo",

 "lat":35.145460183,

 "lng":33.415875169

 }

 }

]

}]

7

Conclusion
In this deliverable, we presented Greycat, the data organization and the useful features of the

database, MinIO and its features that made it an important supplementary database to Greycat,

that make the proposed API useful for the holistic collection, processing and retrieval of data

for AI algorithms in the needs of disaster management.

