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Executive Summary 
Machine learning algorithms typically rely on training data to learn high-level representations and carry 

out a given identification, classification, recommendation or prediction task. This deliverable focuses on 

identifying machine learning algorithms and data that can be used to train those algorithms with the goal 

to achieve increased situational awareness in emergency response. In particular, we a) identify the 

requirements for gaining situational awareness based on the requirements provided by the end-users, b) 

associate the user requirements with machine learning algorithms, c) provide an overview of state-of-

the-art approaches, d) define the appropriate pre-processing techniques for each data type, e) provide 

available datasets and present a data collection approach, f) provide an overview of  AI applications 

focused on processing multi-sensor data in emergency response and categorize them into the three 

scenarios of focus of the AIDERS project being: i) fires, ii) earthquakes and iii) flooding. 
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1. Introduction 
Data and Artificial Intelligence (AI)—and machine learning (ML) algorithms in particular—can be 

instrumental in assisting first responders in handling emergency situations. For example, in the event of 

a fire, firefighters can gain better situational awareness and make better decisions by having access to a 

visualization of the propagation of a fire, receive live video from the scene or be provide with an 

estimation of the number of buildings or people in danger. The availability of all this information in a 

single platform has the potential to make their emergency response operations faster and more effective. 

Most importantly, the availability of these data enables the implementation of machine learning 

algorithms that can make predictions regarding the emergency situation. Such algorithms may include 

the detection of smoke or fire and estimations regarding its propagation, the altitude and spread of fire, 

the identification of the vegetation type. The implementation of such ML algorithms can provide first 

responders with critical insights which would be otherwise hard to get and help them in their operations 

faster and more effective. 

 

An important and challenging part of the implementation of ML algorithms, is the collection and 

automated processing of multi-sensor data—i.e., data collected from various sensors. The main 

challenges include a) the identification of the data required to cover the user-needs and that can be used 

to train algorithms, b) the definition of the data collection process, that is the definition of the 

methodology for collecting the appropriate data and c) the definition of the process for handling and 

processing the data collected – this is required since the data collected from sensors can be noisy and 

inaccurate. This deliverable addresses the above challenges by exploring the middleware layers required 

to support the deployment and execution of real-time ML algorithms. In particular, the real-time 

dimension of this challenge brings several constraints with regards to performances and scalability of 

the algorithms. This includes continuously storing and processing huge volume and diversity of input 

raw data to deliver an instantaneous feedback to the stakeholders to take appropriate decisions along 

mission-critical scenarios. 

 

This deliverable is structured as follows. First, the real-time machine learning algorithms 

required for gaining situational awareness are covered (cf. Section 2). Then, an overview of existing 

state-of-the-art of data representations for spatiotemporal information is reviewed (cf. Section 3). In 

particular, we consider 15 candidate data management solutions that can be adapted, extended or 

improved to be potentially included in the AIDERS AI toolkit, thus aiming to significantly improve the 

situational awareness of first responders in real-time.  
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2. Real-time Machine Learning Algorithms 
Along the past decade, multiple ML algorithms have developed by the research community and quickly 

found applications in various fields, from leisure to more critical systems, like autonomous vehicles and 

mission-critical systems. In the latter case, the employed ML algorithms are expected to process 

continuous information signals (incl. data streams like video or sound) to produce insightful, and 

accurate, feedbacks to first-responders in real-time. However, achieving such a tight real-time support 

raises several challenges for ML algorithms and the supporting infrastructure. 

In this section, we therefore explore the requirements for deploying different classes of ML 

algorithms in the context of mission-critical scenarios to produce real-time feedbacks. To do so, we 

consider different popular classes of ML algorithms that are intended to work with live data streams and 

raise the challenges that such a support imposes to the underlying software infrastructure. In particular, 

given the important volume of data to be processed by such ML algorithms, we carefully look at the 

issues related to the storage, indexation, and processing of spatiotemporal data streams, which are central 

to the AIDERS project. As AIDERS aims to deliver a modular and extensible AI toolkit to assist first-

responders in the field, we do not focus on a restricted set of ML algorithms supporting some specific 

feature, but rather consider families of algorithms and the requirements they impose on the data 

management layers, thus keeping in mind that the list of ML algorithms may be extended in the future 

without questioning the relevance of the data management layer. 

By exploring the potential of existing ML algorithms to deliver real-time insights to first-

responders, we intend to identify the underlying data representation that is required to store 

spatiotemporal data streams, as produced by drones and other equipment, and make them available to 

ML algorithms. Furthermore, to cope with the expected performance constraints, we also consider the 

tight integration of ML algorithms with the foreseen data management layer as a key to a successful 

implementation of real-time ML algorithms. 

Supervised vs. unsupervised learning 

Supervised learning is a machine learning approach that builds on labeled datasets. These datasets are 

designed to train algorithms into classifying data or predicting outcomes accurately. Using labeled inputs 

and outputs, the model can measure its accuracy and learn over time. Supervised learning can be 

separated into two types of problems when data mining: classification and regression: 

 Classification problems use supervised algorithm to accurately assign input data into identified 

categories, such as classifying spam in a separate folder from your inbox. Linear classifiers, 

support vector machines, decision trees and random forest are all common types of classification 

algorithms; 

 Regression is another type of supervised learning method that understands the relationship 

between dependent and independent variables. Regression models are helpful for predicting 

numerical values based on different input data points, such as sales revenue projections for a 

given business. Some popular regression algorithms are linear regression, logistic regression and 
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polynomial regression. Using previously recorded data like temperature, humidity, air quality, it 

is possible to forecast weather.  

Unsupervised learning uses ML algorithms to analyze and cluster unlabeled data sets. These algorithms 

are intended to discover hidden data patterns with no human intervention. Unsupervised learning models 

are used for three main tasks: clustering, association, and dimensionality reduction: 

 Clustering is a data mining technique for grouping unlabeled data based on their similarities or 

differences. For example, K-means clustering algorithms assign similar data points into groups, 

where the K value represents the size of the grouping and granularity. This algorithm can collect 

data from sensors attached to a drone and process them to separate an area into small clusters, 

for example, to discriminate between burned and healthy vegetation. 

 Association is another type of unsupervised learning method that uses different rules to find 

relationships between variables in a given dataset. These methods are frequently used for market 

basket analysis and recommendation engines, along the lines of “Customers Who Bought This 

Item Also Bought” recommendations. 

 Dimensionality reduction is a learning technique used when the number of features in a given 

dataset is too high. It reduces the number of data dimensions to a manageable size while also 

preserving the data integrity. Often, this technique is used in the preprocessing data stage, such 

as when auto-encoders remove noise from visual data to improve picture quality. 

The main distinction between the two approaches is the use of labeled datasets. Supervised learning uses 

labeled input and output data, while an unsupervised learning algorithm does not. In supervised learning, 

the algorithm “learns” from a training dataset by iteratively making predictions on the data and adjusting 

for the correct answer. For example, a supervised learning algorithm can be trained with forest fire image 

samples to learn how to detect smoke and fire from a standard camera. While supervised learning models 

tend to be more accurate than unsupervised learning models, they require upfront human intervention to 

label the data appropriately. For example, a supervised learning model can predict how long your 

commute will be based on the time of day, weather conditions and so on. But first, you have to train it 

to know that rainy weather extends the driving time. For AIDERS project, it can train a neural network 

for aerial image understanding, using a dataset of appropriately labeled pictures where multiple disaster 

events like fire, floods, rubble, traffic accidents and also normal situations. Unsupervised learning 

models, in contrast, work on their own to discover the inherent structure of unlabeled data. Note that 

they still require some human intervention for validating output variables. For example, an unsupervised 

learning model can identify that online visitors often purchase groups of products at the same time. In 

addition to that, we also expect incorporate more recent AI algorithms based on deep learning, like 

Convolutional Neural Networks (CNN), which have demonstrated their capability to detect and localize 

specific hazards with accuracy (cf. Deliverable 3.1). 

In both cases, input data are required to be stored and processed by the infrastructure in order to 

support the predictions—and eventually the training phase in the case of supervised machine learning. 

The volume of data streams produced by drones imposed by mission-critical scenarios challenges the 

data layers to scale and keep enriching the feedbacks proposed to first-responders. Beyond the traditional 
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supervised and unsupervised ML algorithms, several improvements have been proposed in the area to 

deal with the scarcity of resources imposed by the field deployment (both in terms of storage capacity 

and computing resources). 

Incremental learning 

Incremental learning is a method of machine learning in which input data is continuously used to extend 

the existing model's knowledge—i.e., to further train the model. It represents a dynamic technique of 

supervised and unsupervised learning that can be applied when training data becomes gradually available 

over time (like data streams) or when its size reaches out of system memory limits (because of hardware 

constraints). Algorithms that can facilitate incremental learning are known as incremental machine 

learning algorithms. 

Many traditional machine learning algorithms inherently support incremental learning. Other 

algorithms can be adapted to facilitate incremental learning. Examples of incremental algorithms include 

decision trees, decision rules, artificial neural networks or the incremental SVM. The aim of incremental 

learning is for the learning model to adapt to new data without forgetting its existing knowledge. Some 

incremental learners have built-in some parameter or assumption that controls the relevancy of old data, 

while others, called stable incremental machine learning algorithms, learn representations of the training 

data that are not even partially forgotten over time. Fuzzy ART and Topo ART are two examples for this 

second approach. 

  Incremental algorithms are frequently applied to data streams or big data, addressing issues in 

data availability and resource scarcity, respectively. Stock trend prediction and user profiling are some 

examples of data streams where new data becomes continuously available. Applying incremental 

learning to big data aims to produce faster classification or forecasting times. 

Online machine learning 

Online machine learning is a method of machine learning in which data becomes available in a sequential 

order and is used to update the best predictor for future data at each step, as opposed to batch learning 

techniques which generate the best predictor by learning on the entire training data set at once. Online 

learning is a common technique used in areas of machine learning where it is computationally infeasible 

to train over the entire dataset, requiring the need of out-of-core algorithms.  

It is also used in situations where it is necessary for the algorithm to dynamically adapt to new 

patterns in the data, or when the data itself is generated as a function of time—e.g., stock price prediction. 

Online learning algorithms may be prone to catastrophic interference, a problem that can be addressed 

by incremental learning approaches. 

Reinforcement learning 

Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought 

to take actions in an environment in order to maximize the notion of cumulative reward. RL is one of 
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three basic machine learning paradigms, alongside supervised learning and unsupervised learning. RL 

differs from supervised learning in not needing labelled input/output pairs be presented, and in not 

needing sub-optimal actions to be explicitly corrected. Instead, the focus is on finding a balance between 

exploration and exploitation phases. The environment is typically stated in the form of a Markov decision 

process (MDP), because many RL algorithms for this context use dynamic programming techniques. 

The main difference between the classical dynamic programming methods and RL algorithms is that the 

latter does not assume knowledge of an exact mathematical model of the MDP and they target large 

MDPs where exact methods become infeasible. 

This approach is particularly interesting as the MDP offers a more compact representation of the 

captured knowledge, while RL offers a sequential decision process that builds upon previous experience 

and can thus cope with the characteristics of spatiotemporal data streams. 

Deep reinforcement learning 

Deep reinforcement learning (deep RL) is a subfield of machine learning that combines reinforcement 

learning (RL) and deep learning. RL considers the problem of a computational agent learning to make 

decisions by trial and error. Deep RL incorporates deep learning into the solution, allowing agents to 

make decisions from unstructured input data without manual engineering of the state space. Deep RL 

algorithms are able to take in very large inputs (e.g., every pixel rendered to the screen in a video game) 

and decide what actions to perform to optimize an objective (e.g., maximizing the game score). Deep 

reinforcement learning has been used for a diverse set of applications including but not limited to 

robotics, video games, natural language processing, computer vision, education, transportation, finance 

and healthcare, where they have produced results comparable to and in some cases surpassing human 

expert performance. For instance, it can be used to detect specific objects in images and videos, like 

people, buildings, cars, smoke or vegetation, and track them. The use of deep reinforcement learning in 

the context of AIDERS can pave the way to assist first-responders in rescue operations by offering 

automated pilot modes to track persons or hazards by following the evolution of a situation (monitoring 

the front of a forest fire), thus taking control of the drone by sending commands based on information 

produced by integrated deep learning algorithms. 

The combination of RL with deep learning faces nonetheless the challenge of storing and 

processing large volume of data to reach the expected accuracy. 

Synthesis 

As a summary of the overview of ML techniques that can be considered in the context of AIDERS (cf. 

Deliverable 3.1 for a detailed description of concrete and appropriate ML algorithms), we can observe 

that the delivery of real-time ML algorithms requires to carefully consider the resource requirements in 

the context of mission-critical systems with limited capacities (both in processing and storage). While 

ML algorithms may provide some advanced techniques to support the incremental improvement of 

learned models, the traceability and explainability of decisions may still require to keep track of as much 

information as possible. This challenge therefore calls for the selection of an appropriate data 
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management layer that can expose spatiotemporal data streams to a wide diversity of ML algorithms, 

while offering a performant and compact storage of acquired information. 

In the following section, we therefore review existing data management solutions that can be 

adopted to store and process spatiotemporal data streams while keeping their exploitation by ML 

algorithms. Our objective is to identify a candidate solution that can be embedded in the AI toolkit to be 

delivered to first-responders by AIDERS. 

3. Spatiotemporal Data Representations 
Our review of data management solutions for spatiotemporal data representations considers four 

categories of solutions: 

1. Data management solutions that provide a native support for spatial data, but do not necessarily 

consider time as a first-class entity, 

2. Data management solutions that provide a native support for time series, but may miss 

appropriate constructions for spatial dimensions and/or complex data representations, 

3. Data management solutions that enclose a native spatiotemporal support, 

4. Other data management solutions that offer a close integration of the data management layer with 

ML algorithms. 

For each of these categories, we describe the solutions commonly adopted in this domain and consider 

their relevance with regards to the requirements of AIDERS, which can be summarized as: 

a. Providing a flexible data model to cope with the diversity of sensors and missions, 

b. Providing a support for temporal data streams, 

c. Providing a support for geospatial data streams, 

d. Providing a support for large and complex objects (e.g., video), 

e. Proposing a tight integration of the storage and processing layers (in particular ML processing). 

The remainder of this section therefore lists the solution of relevance for AIDERS, before delivering a 

synthesis and a comparison of existing solution to guide the choice of the most suitable candidate for the 

implementation of the AI toolkit. 

Data management solutions with spatial support 

Spatial databases are databases optimized for storing and querying geometric data, like lines and 

polygons. They use spatial indexes to optimize spatial queries using specific datatypes, such as geohash, 

grid, and various kinds of trees (quadtree/octree, R-tree etc.). 

PostGIS 

PostGIS (https://postgis.net) is an extension of PostgreSQL database to deal with spatial datatypes. In 

particular, it adds support for geographic objects allowing location queries to be run in SQL: 

https://postgis.net/
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SELECT superhero.name 
FROM city, superhero 
WHERE ST_Contains(city.geom, superhero.geom) 
AND city.name = 'Gotham'; 

To do so, PostGIS adds extra types (geometry, geography, raster and others) to the PostgreSQL database. 

It also adds functions, operators, and index enhancements that apply to these spatial types. These 

additional functions (e.g., the above function ST_Contains), operators, index bindings and types 

augment the power of the core PostgreSQL DBMS, making it a fast, feature-plenty, and robust spatial 

database management system. PostGIS follows the Open Geospatial Consortium’s “Simple Features for 

SQL Specification”1 and has been certified as compliant with the “Types and Functions” profile. PostGIS 

is open-source software, released under the GNU General Public License. 

Spatial index is one of the three key features of a spatial database. Indexes make using a spatial 

database for large data sets possible. Without indexing, any search for a feature would require a 

“sequential scan” of every record in the database. Indexing speeds up searching by organizing the data 

into a search tree which can be quickly traversed to find a particular record. Standard database indexes 

create a hierarchical tree based on the values of the column being indexed. Spatial indexes are a little 

different – they are unable to index the geometric features themselves and instead index the bounding 

boxes of the features. Instead of comparing two tables of 10,000 records with each other, thus requiring 

100,000,000 comparisons, spatial indexes reduce this cost down to 20,000 comparisons. 

SpatiaLite 

SpatiaLite (https://www.gaia-gis.it/fossil/libspatialite/index) is an open-source library intended to extend 

the SQLite core to support fully-fledged spatial SQL capabilities. It is similar to PostGIS, although 

SpatiaLite is not based on a client-server architecture: it adopts a simpler architecture, being directly 

embedded within the application itself. A complete database simply is an ordinary file which can be 

freely copied and transferred from one computer/OS to a different one without any special precaution. 

SpatiaLite extends SQLite's existing spatial support to cover the OGC's SFS specification (like PostGIS). 

It is not necessary to use SpatiaLite to manage spatial data in SQLite, which has its own implementation 

of R-tree indexes and geometry types. However, SpatiaLite is needed for advanced spatial queries and 

to support multiple map projections. 

Elasticsearch 

While Elasticsearch is best known for its full-text search capabilities (https://www.elastic.co), it also 

features full geospatial support. Elasticsearch offers two ways to represent geodata: i) latitude-longitude 

pairs using geo_point field type,2 and ii) complex shapes defined in GeoJSON using geo_shape 

field type.3 We can also provide geo point data in the form of geo hash. Similar to geo_shape type, 

                                                 

 
1 https://www.ogc.org/standards/sfs  
2 https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-point.html  
3 https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-shape.html 

https://www.gaia-gis.it/fossil/libspatialite/index
https://www.elastic.co/
https://www.ogc.org/standards/sfs
https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-point.html
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geo_shape uses GeoJSON structure to query documents. Below is a sample query to fetch all 

documents that fall within given top-left and bottom-right coordinates: 

{ 

  "query": { 

    "bool": { 

      "must": { 

        "match_all": {} 

      }, 

      "filter": { 

        "geo_shape": { 

          "region": { 

            "shape": { 

              "type": "envelope", 

              "coordinates": [[75.00, 25.0], [80.1, 30.2]] 

            }, 

            "relation": "within" 

          } 

        } 

      } 

    } 

  } 

} 

Here, relation determines spatial relation operators used at search time. The list of operators supported 

by Elasticsearch are typically: 

 INTERSECTS – (default) returns all documents whose geo_shape field intersects the query 

geometry 

 DISJOINT – retrieves all documents whose geo_shape field has nothing in common with 

the query geometry 

 WITHIN – gets all documents whose geo_shape field is within the query geometry 

 CONTAINS – returns all documents whose geo_shape field contains the query geometry 

GeoShape types are indexed by decomposing the shape into a triangular mesh and indexing each triangle 

as a 7-dimensions point in a k-dimensional B-tree.4 This provides near perfect spatial resolution (down 

to 1e-7 decimal degree precision) since all spatial relations are computed using an encoded vector 

representation of the original shape instead of a raster-grid representation as used by the Prefix trees 

indexing approach. Performance of the tessellator primarily depends on the number of vertices that 

define the polygon/multi-polygon. To efficiently represent shapes in an inverted index, shapes are 

converted into a series of hashes representing grid squares (commonly referred to as "rasters") using 

implementations of a PrefixTree. The tree notion comes from the fact that the PrefixTree uses multiple 

grid layers, each with an increasing level of precision to represent the Earth. This can be thought of as 

increasing the level of detail of a map or image at higher zoom levels. Since this approach causes 

precision issues with indexed shape, it has been depreciated in favor of a vector indexing approach that 

indexes the shapes as a triangular mesh. Multiple PrefixTree implementations are provided: 

                                                 

 
4 https://en.wikipedia.org/wiki/K-D-B-tree  

https://en.wikipedia.org/wiki/K-D-B-tree
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 GeohashPrefixTree - Uses geohashes for grid squares. Geohashes are base32 encoded strings of 

the bits of the latitude and longitude interleaved. So, the longer the hash, the more precise it is. 

Each character added to the geohash represents another tree level and adds 5 bits of precision to 

the geohash. A geohash represents a rectangular area and has 32 sub rectangles. The maximum 

number of levels in Elasticsearch is 24; the default is 9; 

 QuadPrefixTree - Uses a quadtree for grid squares. Similar to geohash, quad trees interleave the 

bits of the latitude and longitude the resulting hash is a bit set. A tree level in a quad tree 

represents 2 bits in this bit set, one for each coordinate. The maximum number of levels for the 

quad trees in Elasticsearch is 29; the default is 21. 

The indexing implementation selected relies on a spatial strategy for choosing how to decompose the 

shapes (either as grid squares or a tessellated triangular mesh). Each strategy answers the following: 

 What type of Shapes can be indexed? 
 What types of Query Operations and Shapes can be used? 
 Does it support more than one Shape per field? 

Geocouch 

GeoCouch (https://github.com/couchbase/geocouch) is a spatial extension for Couchbase and Apache 

CouchDB, which are two open-source document-oriented NoSQL databases. They store data as 

"documents", as one or more field/value pairs expressed as JSON. Field values can be simple things like 

strings, numbers, or dates; but ordered lists and associative arrays can also be used. CouchDB supports 

special documents within databases known as “design documents”. These documents, mostly driven by 

JavaScript you write, are used to build indexes, validate document updates, format query results, and 

filter replications. All documents are exposed through HTTP. 

GeoCouch follows the GeoJSON format and brings support for point, linestring and polygon 

datatypes to CouchDB. One can for instance push a design document inside the database with a spatial 

function: 

{"spatial": 

  {"points": “function(doc) { 

    if (doc.loc) { 

      emit([{ 

          type: \"Point\", 

          coordinates: [doc.loc[0], doc.loc[1]] 

        }], 

        [doc._id, doc.loc] 

      ); 

    }};" 

  } 

} 

Then, it can query all the data whose coordinates are inside an area with the following URL: 

http://example:5984/places/_design/main/_spatial/points?start_range=

[0,0]&end_range=[180,90] 

 

https://github.com/couchbase/geocouch
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It is worth noting that the development of GeoCouch does not seem active since the last update on the 

official repository dates from May 2018. 

In the case of Couchbase, geospatial data are now natively supported. Data must be indexed on 

geospatial, one or more points that can be defined by their latitude/longitude or a Geohash. Then we can 

query the data whose coordinates are located within a radius, a rectangular or polygonal area. 

ArangoDB 

ArangoDB (https://www.arangodb.com/) is a “multi-model” database, meaning that it can be used as a 

document database, storing records inside JSON documents, or as a graph database, using these 

documents to represent nodes and edges, with two attributes to index the edge’s vertices. ArangoDB 

includes the new GeoJSON functionalities based on Google’s S2 geospatial index. It supports indexing 

on a subset of the GeoJSON standard, as well as simple latitude-longitude pairs (Non-GeoJSON mode). 

As such, we can define points, lines, polygonal chains and polygons. It also provides the following 

functions for requests: 

 GEO_DISTANCE() returns the distance between two locations; 

 GEO_CONTAINS()checks whether a location is inside another one; 

 GEO_INTERSECTS()checks if two locations intersect each other; 

 GEO_EQUALS(): checks whether GeoJSON objects are equal or not. 
 

It only manages basic datatypes, like numbers, strings, booleans, and arrays or JSON-like documents. 

Redis 

Redis is an in-memory database, meaning the dataset resides on the main memory during operation, 

while it is periodically dumped to disk for persistence. Beyond the standard datatypes, Redis natively 

deals with spatial data by providing the following commands: 

 GEOADD adds a geospatial item, defined by its latitude and longitude, to a set in the database. 

Data is stored into the key as a sorted set, in a way that makes it possible to query the items with 

the GEOSEARCH command. Redis represents positions of elements using a variation of the 

Geohash technique where positions are encoded using 52-bit integers. The encoding is also 

different compared to the standard because the initial min and max coordinates used during the 

encoding and decoding process are different; 

 GEODIST returns the distance between two members in the geospatial index represented by the 

sorted set; 

 GEOHASH returns the standard Geohash strings of the requested geospatial items; 

 GEOPOS returns the latitude and longitude of the requested geospatial items; 

 GEOSEARCH returns the members of a sorted set populated with geospatial information using 

GEOADD, which are within the borders of the area specified by a given shape. The query runs in 

O(N + log(M)) where N is the number of elements in the grid-aligned bounding box area around 

the shape provided as the filter and M is the number of items inside the shape; 

 GEOSEARCHSTORE does the same as GEOSEARCH, but stores the result in destination key. 

https://www.arangodb.com/
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Geospatial indexing is implemented in Redis using sorted sets as the underlying data structure, but with 

on-the-fly encoding and decoding of location data and new APIs.5 This means that location-specific 

indexing, searching, and sorting can all be offloaded to Redis, with very few lines of code and very little 

effort, using built-in commands, like GEOADD, GEODIST, GEORADIUS, and GEORADIUSBYMEMBER. 

Tile38 

Tile38 (https://github.com/tidwall/tile38) is an open source (MIT licensed), in-memory geolocation data 

store, spatial index, and real-time geofence. It supports many geospatial datatypes including: 

 Points defined by latitude and longitude; 

 Bounding boxes; 

 XYZ tiles: rectangle bounding area on earth that is represented by an X, Y coordinate and a Z 

(zoom) level; 

 QuadKey: the same coordinate system as an XYZ tile except that the string representation is a 

string characters composed of 0, 1, 2, or 3; 

 Geohashes; 

 GeoJSON format for representing a variety of object types including a point, multipoint, 

linestring, multilinestring, polygon, multipolygon, geometrycollection, feature, and 

featurecollection. 

For all these datatypes, Tile38 supports the following search criteria: 

 WITHIN: searches a collection for objects that are fully contained inside a specified bounding 

area; 

 INTERSECTS: searches a collection for objects that intersect a specified bounding area; 

 NEARBY: searches a collection for objects that intersect a specified radius. 

However, it cannot deal with even primitive datatypes, such as numbers or booleans. Tile38 is 

exclusively designed for geospatial data. 

Data management solutions with time support 

Time-series databases are databases optimized for the storage and querying of time-series data, which 

are simply data indexed on time. 

InfluxDB 

InfluxDB (https://www.influxdata.com/) is a time-series database designed for fast-ingestion, and 

querying of timestamped data, such as events and metrics. However, it can only deal with primitive 

datatypes like booleans, numbers, strings and timestamps. InfluxDB records automatically include a 

_time field representing the timestamp of the record, and tag fields which can be set freely to index and 

speed up queries relying on these tags. It does not support ML processing internally but can be connected 

                                                 

 
5 https://redislabs.com/docs/redis-for-geospatial-data/  

https://github.com/tidwall/tile38
https://www.influxdata.com/
https://redislabs.com/docs/redis-for-geospatial-data/
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to LoudML which is a new deep learning API that makes it simple to prepare, train, and deploy machine 

learning models for predictive analytics with InfluxDB. 

OpenTSDB 

OpenTSDB (https://github.com/OpenTSDB/opentsdb) consists of a Time Series Daemon (TSD) that rely 

on instances of Apache HBase, which is an open-source non-relational distributed database, suited for 

hosting very large datasets (up to several billions of records per table). 

In OpenTSDB, a time series data point consists of:  

 A metric name for the time-series; 
 A UNIX timestamp (seconds or milliseconds since Epoch); 
 A value (64-bit integer or single-precision floating point value); 
 A set of tags (key-value pairs) that describe the time series the point belongs to. 

It can then efficiently perform aggregations of time-series (computations of nth percentile, average, 

maximal and minimal values etc.) and interpolate the possible missing values. 

Data management solutions with spatio-temporal support 

MobilityDB 

MobilityDB (https://github.com/MobilityDB/MobilityDB) is a database management system for moving 

object geospatial trajectories, such as GPS traces. It adds support for temporal and spatio-temporal 

objects to the PostgreSQL database and its spatial extension PostGIS. It supports the “Moving Features” 

standards from the Open Geospatial Consortium (OGC). It allows temporal and spatio-temporal objects 

to be stored in the database, that is, objects whose attribute values and/or location evolves in time. 

MobilityDB includes functions for analysis and processing of temporal and spatio-temporal objects and 

provides support for GiST and SP-GiST indexes. 

TimescaleDB 

TimescaleDB (https://www.timescale.com) is an open-source, time-series database based on 

PostgreSQL. As an extension of PostgreSQL, it supports all of its properties, including support for binary 

data. The primary point of interaction with the data is a hypertable, the abstraction of a single continuous 

table across all space and time intervals, such that one can query it via standard SQL. Virtually all user 

interactions with TimescaleDB are with hypertables. Creating tables and indexes, altering tables, 

inserting data, selecting data, etc. can (and should) all be executed on the hypertable.   

Internally, TimescaleDB automatically splits each hypertable into chunks, with each chunk 

corresponding to a specific time interval and a region of the partition key’s space (using hashing). The 

good news is that TimescaleDB is compatible with all other PostgreSQL extensions and, for geospatial 

data, we’ll use PostGIS. 

https://github.com/OpenTSDB/opentsdb
https://github.com/MobilityDB/MobilityDB
https://www.timescale.com/
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Druid 

Druid (https://druid.apache.org) is a real-time time-series analytics database. Internally, data are 

partitioned by time and optionally by other attributes, then further divided into smaller range of time. 

Druid natively supports five basic column types: "long" (64-bit signed int), "float" (32-bit float), 

"double" (64-bit float) "string" (UTF-8 encoded strings and string arrays), Timestamps are treated by 

Druid as longs. Users can query Druid by sending JSON-formatted documents over HTTP. 

Druid allows to retrieve the first and last timestamp of a time-series, and perform aggregations 

on them, like counting, adding up the records, retrieve the min or max value for a field. It also supports 

basic geospatial data. For instance, one can filter elements that are contained inside a rectangular, 

polygonal or circular area: 

"filter": { 

  "type": "spatial", 

  "dimension": "spatialDim", 

  "bound": { 

    "type": "rectangular", 

    "minCoords": [10.0, 20.0], 

    "maxCoords": [30.0, 40.0] 

  } 

} 

GeoWave 

GeoWave (https://github.com/locationtech/geowave) provides geospatial and temporal indexing 

capability to key/value stores (currently Apache Accumulo, Apache HBase, Apache Cassandra, Amazon 

DynamoDB, Cloud Bigtable, Redis, RocksDB, and Apache Kudu, as well as direct FileSystem support). 

It includes implementations that support OGC spatial types (up to 3 dimensions), and both bounded and 

unbounded temporal values. Both single and ranged values are also supported in all dimensions. 

GeoWave’s geospatial support is built on top of the GeoTools project extensibility model. This means 

that it can integrate natively with any GeoTools-compatible project, such as GeoServer and UDig, and 

can ingest GeoTools compatible data sources. Basically, GeoWave is working to bridge geospatial 

software with distributed computing systems and attempting to do for distributed key/value stores what 

PostGIS does for PostgreSQL. 

GreyCat 

GreyCat (https://greycat.ai) is a temporal many-world graph database. Data are organized in nodes with 

relationships between them, and these data can have multiple values through time. After managing the 

time, GreyCat allows you to run simulations over the temporal graph. Inspired from the many-world 

interpretation in physics, it can fork the current database in order to simulate “what-if” scenarios.  

For example, this technique allows to simulate for example what will happen if in a hypothetical 

action was taken without corrupting the current state of the graph. Greycat supports many datatypes: 

https://druid.apache.org/
https://github.com/locationtech/geowave
https://greycat.ai/
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numbers, strings, date/time, maps, arrays, and points, polygons, and circles as geospatial data. Greycat 

also provides math primitives and tensor operations through a custom API to implement and speed up 

ML algorithms. 

Other data management solutions of relevance 

MLDB 
MLDB (https://mldb.ai) is an open-source database designed for machine learning. Users can execute 

procedures and functions through REST endpoints to load or save datasets, and train machine learning 

models or apply them. Datasets are schema-less, append-only named sets of data points, which are 

contained in cells, which sit at the intersection of rows and columns. There are several types of datasets 

available, based on MongoDB, SQLite, CSV format, and can store numbers, strings, date/time and binary 

data. Data points are composed of a value and a timestamp. Each data point can thus be represented as a 

(row, column, timestamp, value) tuple, and datasets can be thought of as sparse 3-dimensional matrices. 

The timestamp field allow MLDB to keep different state of the same, as long as its modification times. 

Its last community-edition release dates from 2017 so we can assume that the database is no longer 

maintained. 

Synthesis 

This section summarizes the strengths and weaknesses of existing spatio-temporal data management 

solutions that can be considered to support real-time machine learning. They key criterions to consider 

in order to handle real-time machine learning in the context of mission-critical systems, like AIDERS, 

relates to: 

1. Proposing a flexible data model to store and organize the information in memory. This includes 

the support for complex data structures with relationships, but also the support for flexibility by 

accommodating a wide variety of data types and structural organizations, which can typically 

change from one mission to another; 

2. Proposing a native support for the temporal dimension of events to reason upon latest periods 

of time. This aims to cope with the volatile nature of information to be processed by first 

responders and thus the necessity to reason upon the latest changes observed in the environment 

without including outdated information that may mislead the command center. 

3. Proposing a native support for the spatial dimension of events to process localized events 

observed in the field in order to report with the maximum accuracy upon the evolution of a critical 

situation in a given area of interest; 

4. Proposing a native support for the BLOB objects that cover the variety of multimedia streams 

that can be captured by the drones and their onboard sensors; 

5. Proposing a symbiotic integration with machine learning algorithms in order to support 

instantaneous reaction to the occurrence of new events. This criterion aims to evaluate a tight 

integration of a data management solution with machine learning algorithms consuming the 

stored data and potentially producing data insights to be stored persistently; 

6. Buidling upon an active community of developers to ensure the long-term support of the 

developed tools and methodologies. 

https://mldb.ai/
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The following table therefore provides a detailed evaluation of the above criterions for all the data 

management solutions introduced in the previous section: 

Solution Model Time Spatial BLOB ML Status 

PostGIS relational no advanced yes no active 

SpatiaLite relational no advanced yes no active 

ElasticSearch document no advanced yes no active 

GeoCouch document no advanced yes no maintenance 

ArangoDB document/ 

graph 

no basic yes no active 

Redis key/value no basic yes no active 

Tile38 key/value no basic yes no active 

InfluxDB key/value yes no no indirectly active 

OpenTSDB key/value yes no no no active 

Druid key/value yes basic yes no active 

MLDB key/value no no yes yes stalled 

TimescaleDB relational yes advanced yes no active 

MobilityDB relational yes advanced yes no active 

GeoWave key/value yes advanced yes no active 

GreyCat graph yes advanced yes yes active 

Given the above evaluation of all solutions, we recommend to consider the GreyCat data management 

solution to support the deployment of real-time machine learning algorithms in the context of mission-

critical applications, like first-responders assistance. This recommendation is motivated by the facts that 

GreyCat provides a flexible data model that supports complex and flexible information structures, 

organized as spatiotemporal graphs, that can embed machine learning algorithms to continuously 

evaluate and update insights according to the evolution of the situation. 

In GreyCat, data are natively structured and stored as spatiotemporal graphs, which are nodes 

with relationships between them (edges), whose enclosed attributes can have multiple values through 

time, so called streams. In addition to attributes, nodes and edges can be indexed along time and spatial 

dimensions. As illustrated below, GreyCat graphs can therefore change along with time and these 

changes will be recorded as state chunks, which enable a finer granularity of changes storage, thus 

reducing the storage overhead of spatiotemporal graphs in the context of constraint environments. 
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In addition to the storage of discrete information as state chunks, GreyCat can also segment continuous 

data (or signals) by time range and capture them as polynomial regressions (cf. figure below). This 

method allows GreyCat to further increase the storage of data streams, avoiding to store many similar 

recordings and saving disk space, while minimizing accuracy losses. 

 

This method significantly reduces the read and write access time of the data samples acquired by the 

sensors (e.g., altitude, longitude, latitude) that will be continuously collected by drones while in 

operation. The following figures highlight the performances of GreyCat for writing and reading data 

streams, no matter the underlying physical laws captured by the streams. 
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Comparison of discrete vs. regression-based write performance in GreyCat. 

 
Comparison of discrete vs. regression-based sequential read performance in GreyCat. 

 
Comparison of storage capacity savings achieved by regression-based data representation. 
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Based on this capacity of adjusting the node-scale data encoding strategy, GreyCat can also embed 

specific ML algorithms (e.g., Gaussian Mixture Models), known as micro learning, to continuously 

compute advanced AI models atop of raw measurement streams reported by sensors with a finer 

granularity than state-of-the-art algorithms that either work at a coarse-grained level (cf. figures below). 

ML algorithms are connected to the input data streams and can add/remote or update nodes, edges and 

attributes to reflect the outcome of integrated algorithms as nodes that can be queried by the firs-

responders' applications. Thus, hiding the complexity of triggering complex ML tasks. Furthermore, by 

distributing the learning at the scale of node, the accuracy of predictions can be greatly improved 

compared to state-of-the-art approaches. 

 

 
Comparison of micro vs. Macro learning prediction strategies. 

Finally, while GreyCat supports the storage of BLOB (like streams), it is recommended to store and 

index the associated metadata as part of the graph and store the multimedia payload by using a third-

party solution, like MinIO (https://min.io). Therefore, as part of the AIDERS AI toolkit, we intend to 

combine both GreyCat with MinIO to ensure the storage of data streams and implement ML algorithms 

for first-responders. 

https://min.io/
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4. Conclusion 
This deliverable provided fundamental insights in collecting and utilizing multi-sensor data for the 

purposes of developing AI algorithms for the AIDERS project. An initial mapping of user requirements 

to algorithms enabled the identification of data management solutions that can be utilized to support real-

time machine learning algorithms. We provided an overview of existing solutions that can be adapted or 

expanded to cover the needs of the AIDERS project. 

 

In addition, we identified the data required for training machine learning algorithms, we have 

presented publicly available datasets that can be utilized for the purposes of the project and a 

methodology for developing a dataset. Furthermore, we provided the state-of-the art approaches in data 

pre-processing and popular approaches and tools for data cleansing, data reduction and data wrangling 

have been presented. Finally, we have provided an overview of other projects and systems developed 

towards the handling multi-sensor data in emergency response, and in fires, earthquakes and search and 

rescue in particular.  

 

Using the insights presented in this deliverable, the DG ECHO AIDERS consortium will proceed to 

the design and implementation of machine learning algorithms to solve the problems faced by first 

responders, assist them in capacity building and improve emergency response.   


