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Abstract The ability to efficiently plan and execute automated and precise search
missions using unmanned aerial vehicles (UAVs) during emergency response situations
is imperative. Precise navigation between obstacles and time-efficient searching of
3D structures and buildings are essential for locating survivors and people in need
in emergency response missions. In this work we address this challenging problem
by proposing a unified search planning framework that automates the process of
UAV-based search planning in 3D environments. Specifically, we propose a novel
search planning framework which enables automated planning and execution of
collision-free search trajectories in 3D by taking into account low-level mission
constrains (e.g., the UAV dynamical and sensing model), mission objectives (e.g.,
the mission execution time and the UAV energy efficiency) and user-defined mission
specifications (e.g., the 3D structures to be searched and minimum detection
probability constraints). The capabilities and performance of the proposed approach
are demonstrated through extensive simulated 3D search scenarios.
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1 Introduction

The miniaturization and cost reduction of electronic components and the recent
technological advancements in avionics, robotic systems and artificial intelligence has
led to the rapid growth of unmanned aerial vehicles (UAVs). We have now reached a
state where UAVs have become an important asset in various application domains
including response efforts in disaster management [51, 15, 5, 12, 35, 41, 46, 45, 13,
33, 34, 36, 29, 4, 19, 28]. For instance, the use of UAVs in search and rescue (SAR)
missions not only can allow for more efficient organization, planning and execution
of tasks, but it can also enhance the safety of the first responders by allowing them
a) to analyze the situation at hand before proceeding with their operations and b)
assisting them during their search operations by providing information about their
searching patterns and spreading.

However, nowadays UAVs are being used by first responders mainly to provide a
birds-eye view of the incident (in case of a forest fire or flood, for instance) and for
conducting rapid spot searches over inaccessible areas (e.g., to locate missing people
and for damage assessment). In many situations, searching the affected area for
survivors from a birds-eye view is not sufficient for locating survivors, especially
in challenging environments (e.g., under foliage). In addition, precise navigation
between obstacles and time-efficient searching of 3D structures are essential for the
success of the mission [17]. Moreover, UAVs are currently being operated manually
which can be an inefficient and error-prone process. Finally, the manual operation of
UAVs requires a high degree of human expertise and substantial training, and as a
result the operation of UAVs is limited only to specialists [7].

To summarize, when natural disasters occur an immediate life-saving response is
essential in order to rescue people from imminent danger. The goal of this life-saving
response i.e., the search and rescue (SAR) mission is to rescue the largest number of
people in the shortest time, while at the same time minimize the risk of the rescuers.
Search missions however, could be extremely challenging and dangerous. The search
crew is required to respond to devastations caused by floods, storms, maritime
accidents, earthquakes, hazardous materials releases, etc. The responders are often
required to posses specialized skills, training and equipment in order to work in
areas where public services are unavailable and the infrastructure is destroyed and
disrupted (e.g., during floods with downed power lines and gas leaks). The search
team is often required to search around and along large structures/buildings, below
bridges and under high foliage in order to locate people in need. The fundamental
idea which motivates this work, is that an autonomous aerial agent (i.e., a UAV)
could become an important aid in many search and rescue missions by improving the
efficiency and organization of the mission while at the same time reducing the need to
place the rescuers in danger situations. However, UAVs are currently under-utilized
in SAR missions as they are mainly used to provide an aerial birds-eye view of the
situation at hand. For this reason, in this work we propose a novel search-planning
framework which can be used by first responders in order to automate the operation
of an autonomous UAV agent in search-missions, and allow for precise, efficient and
collision-free UAV-based navigation and searching around 3D structures.

More specifically, this work proposes a search planning framework that can be
used by the rescue crew in order to automate the planning and execution of UAV-
based search missions in 3D environments. An illustrative example is shown in Fig.
1. The proposed framework takes into account a) the low-level mission constraints
such as the UAV dynamics (we model the UAV agent as a point mass with 3D linear
dynamics) and sensing model (i.e., the geometry of the sensor’s field-of-view and
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Fig. 1 The paper proposes a search-planning framework which can be used by first-responders in
order to automate the UAV-based 3D searching during SAR missions. The proposed framework
allows the UAV agent to search an object of interest in 3D, avoid obstacles and optimize the
mission objectives. The numbers indicate: 1) UAV starting position, 2) the object of interest to
be searched, 3) cuboids generated by the proposed framework which allow the UAV to search
the object of interest in 3D, 4) obstacles, 5) goal region to be reached by the UAV at the end of
the mission. Finally, the red line shows the generated planned UAV trajectory.

sensing constraints), b) the mission objectives (i.e., the mission execution time and
the UAV energy efficiency) and finally c) the search mission specifications (e.g., the
objects to be searched, the obstacles to be avoided, and the probability of detecting
survivors) and then it provides a collision-free search trajectory which optimizes the
mission objectives and searches the objects of interests in 3D with the required user
specified detection probability. Overall, the contributions of this work are as follows:
– We propose a novel search planning framework which can be used to automate the

UAV-based search missions in 3D environments. The proposed framework takes
into account low-level mission constrains (UAV dynamical and sensing model),
mission objectives (mission execution time and the UAV energy efficiency) and
mission specifications (e.g., 3D structures to be searched, obstacles to be avoided
and the minimum detection probability for locating survivors) and computes the
optimal UAV control inputs that execute the desired search plan.

– We model all 3D structures (i.e., objects to be searched and obstacles) using
rectangular cuboid primitives which allows us to use mathematical programming
techniques in order to formulate the search planning problem in 3D using mixed
integer quadratic programming (MIQP) and solve it exactly using standard
off-the-shelf solvers.

To briefly summarize the proposed approach, in this work we assume that a
controllable UAV agent, operates inside a bounded 3D environment. The UAV
agent evolves in 3D according to its dynamical model (i.e., Sec. 4.1) and can search
the surrounding area for survivors according to its sensing model (i.e., Sec. 4.2).
The environment contains two types of objects i.e., a) objects of interest which
need to be searched in 3D (i.e., searched across all faces), and b) obstacles that
need to be avoided. All types of objects are modeled as rectangular cuboids in this
work (i.e., Sec. 4.3). The goal of the UAV agent is to search all faces of each object
of interest for survivors with the required user specified minimum probability of
detection and navigate to a user specified goal region by avoiding the obstacles in
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its way. At the same time the UAV agent must optimize the mission objectives i.e.,
mission execution time and energy efficiency. To accomplish this task in the proposed
framework we use mathematical programming techniques to encode the various
requirements of the mission including the description of objects of interests, obstacle
avoidance constraints and the mission objectives as a mixed integer quadratic
program (MIQP) which is solved exactly using off-the-shelf solvers. To accomplish
the 3D search of an object of interest we discretize the area around the object by
creating 3D zones (i.e., Sec. 5.2.1) and with mathematical programming techniques
we create 3D search constraints (i.e., Sec. 5.2.2) in order to guide the UAV through
the appropriate 3D zones and search the object of interest according to the required
detection probability.

The rest of the paper is structured as follows. Section 2 presents an overview of
the related work on this topic. Section 3 formulates the problem and provides an
overview of the proposed framework. Section 4 develops the system model and Sec.
5 discusses the details of the proposed 3D search planning approach. Finally, Sec. 6
evaluates the proposed framework and Sec. 7 concludes the paper and discusses
future work.

2 Related Work

Autonomous planning and control are two of the most desirable capabilities in
mobile robotics. Over the last years a plethora of methods have been proposed from
academic and industrial research labs especially for the problem of autonomous
planning and control for ground robots operating in 2D and 2.5D environments. For
instance the authors in [8] develop a path planning and execution method, for search
and rescue ground robots, which is able to handle a complex and non-flat terrain.
In order to reduce the computational complexity of the task, the authors propose
to decouple the problem into positioning and orientation planning. Additionally,
the work in [3] proposes a path-planning technique for detecting a static target
during search and rescue missions. The technique in [3] is exact and is solved using
mixed-integer linear programming (MILP). However, it is based on a 2D discrete
representation of the world and it does not considers the agent dynamics. The
authors in [44] investigate various 2D path-planning heuristic techniques for searching
survivors during disasters, including artificial potential fields (APF) [56], fuzzy logic
[24] and genetic algorithms (GA) [52]. The proposed techniques however are purely
kinematic and they do not consider obstacle avoidance constraints. Similarly, the
work in [32] develops a search-and-track (SAT) planning technique for searching an
area of interest with multiple UAV agents and tracking multiple targets in SAR
missions. Their search planning algorithm is based on integer linear programming
(ILP) on a 2D discrete representation of the world without obstacles. More recently
the work in [1] investigated the problem of UAV path planning during SAR missions.
The authors formulate the trajectory planning problem as a model predictive control
(MPC) problem and they solve it using particle swarm optimization (PSO). This
technique however used a 2D coordinated kinematic model for the UAVs and the
path planning was conducted in two-dimensions.

Although the majority of proposed approaches have reached a significant level of
maturity, there are still challenges to be tackled when more complex scenarios are
considered i.e., autonomous UAV-based planning and control in 3D environments,
complex mission objectives and low-level mission constraints. To address such
challenges, the works in [6, 43, 50, 20] have investigated the problem of UAV-based
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3D path planning with the main objective being the search for a collision-free
trajectory to the goal region. Specifically, the authors in [6] propose a two-step
planning approach using Voronoi graph search and artificial forces whereas in [43],
the problem of UAV path planning in GPS-denied environments is being investigated
using Belief Roadmaps [40]. In [50], a receding horizon UAV planning approach is
proposed which is solved using gradient-based methods, whereas in [20] the authors
use rapidly-exploring random trees (RTTs) [21] to generate collision-free waypoints
which are then connected with straight line segments and smoothed out using cubic
Bezier curves [16] to create a continuous curvature path which the UAV can execute.

The combined problem of path and task planning, along with the automated
generation and execution of high-level missions is essential for allowing autonomous
robotic systems in taking part in various missions. Towards this direction, the authors
in [25] seek to enhance the autonomy of an under-water vehicle, by specifying the
mission objectives and constraints in a high-level form using a regular language. This
high-level mission specification is then automatically translated into a collision-free,
dynamically feasible, and low-cost trajectory which the vehicle can execute. The
approach utilizes a navigation roadmap and sampling-based motion planning to
determine the dynamically feasible and collision-free trajectories along the navigation
routes. In a similar fashion, the work in [39], tackles the combined problem of robot
task planning and motion planning and proposes an interactive search approach,
which couples sampling-based motion planning with action planning. In [39], a
planning domain definition language (PDDL) is used to specify the desired robot
task, which is then automatically converted into a collision-free and dynamically
feasible trajectory using sampling-based motion planning. Finally, the work in
[54], proposes a multi-UAV reactive motion-planner for the task of persistent
coverage of risk-sensitive areas. The work in [54] combines persistent coverage with
risk minimization, and sensor data quality maximization, by leveraging simple
interactions between the UAVs.

In this work we propose a framework dedicated to search-planning which can be
used by a human operator in order to automate the UAV-based 3D trajectory planning
during search missions. This is complementary to the above mentioned approaches
and can be used in combination to achieve specific goals. In particular, the proposed
framework is unique in the sense that it takes into account UAV characteristics,
mission-specific objectives, and mission constraints and produces optimized UAV
controls that allow the agent to autonomously navigate the 3D environments, avoid
obstacles and search the specified 3D structures to achieve the mission objectives.
While existing approaches focus mainly on avoiding obstacles while en route to their
destination, the proposed framework incorporates the UAV dynamics, the UAV
sensing model, and mission specific objectives into the search planning problem,
thus ultimately computing the UAV control inputs which produce successful search
trajectories. In addition, the proposed framework captures actual requirements
found in real search-missions including: a) searching 3D objects/structures from all
views and b) meeting a certain detection level in the captured data in order to spot
the survivors. Finally, in the proposed framework the 3D search-planning problem is
formulated as a mixed integer quadratic programming (MIQP) problem, which can
be solved exactly and efficiently using off-the-shelf solvers.
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Fig. 2 Overview of the proposed search-planning framework. The proposed framework aims
to automate the second and most critical phase (i.e., the search phase) of a traditional SAR
mission with a single UAV agent.

3 Problem Setup

SAR missions typically consist of three phases [49, 53], namely: a) assessment, b)
search and c) rescue. The goal of the assessment phase is the determination of the
course of action. In this phase the rescue team assesses the damages and the hazards
in the vicinity of the affected area in order to prepare and organize the search
and rescue mission. Thereafter, the goal of the search phase is to conduct efficient,
organized and thorough searches in the affected area in order to locate survivors as
efficiently as possible. Search operations, when possible, follow optimized search
patterns that have been planned ahead in order to increase the efficiency of the
search. In addition, the search team is often required to search around and along
large structures/buildings, below bridges and under high foliage in order to locate
people in need. Finally, during the last phase, the located people are given medical
aid and are transported to safety.

With the proposed search-planning framework we aim to automate the second
phase (i.e., the search phase) of the SAR mission. The proposed search planning
framework is illustrated in Fig. 2. Essentially, the human operator provides the
mission specifications which are then used by the proposed framework in order to
automate the 3D search phase by a single UAV agent. For the Search Planning
phase, the proposed framework provides fine-tuned and collision-free search plans
which incorporate information regarding the agent dynamic and sensing model, the
mission objectives and constraints and the specifications regarding the objects to be
searched and the obstacles to be avoided. In essence, the Search Planning phase
computes the optimal low-level control inputs which allow the UAV to autonomously
search objects of interest in 3D using its camera system, avoid all obstacles in its
way and navigate the surveillance region in a way which is optimal according to the
specified mission objectives.

To do so, in this work we assume that a controllable UAV agent, can operate
inside a bounded 3D environment which may contain a) objects of interest which
need to be searched in 3D (i.e., searched across all faces), and b) obstacles that need
to be avoided. Additionally, we assume that the UAV departs from its home depot
in the beginning of the search mission and reaches the goal region at the end of the
mission.

Let the set of all objects of interest inside the surveillance region be denoted by
𝐽 = {𝑗1, 𝑗2, · · · , 𝑗|𝐽|} with the set cardinality |𝐽 | denoting their total count. Similarly,
we denote the set of all obstacles in the environment by Ξ = {𝜉1, 𝜉2, · · · , 𝜉|Ξ|}. The
sets 𝐽 and Ξ are assumed to be known and given. Additionally we assume that
a) the UAV agent evolves in time according to a discrete-time dynamical model,
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b) the UAV is equipped with an onboard camera system which exhibits a finite
field-of-view (FoV), and that c) the UAV uses its camera to take snapshots from the
environment in order to find people that need help. The dimensions and location of
the obstacles and objects of interest are assumed to be known.

The proposed search planning framework takes into account the low-level mission
constraints i.e., the UAV dynamics and the UAV sensing model (i.e., the onboard
camera system characteristics) and allows a human operator to specify the initial
state (i.e., location) 𝑥0 of the agent, the goal region 𝒢 to be reached at the end of
the mission (e.g., landing area), the set of objects of interest 𝐽 to be searched, the
set of obstacles Ξ to be avoided, the mission objectives (i.e., optimize the mission’s
execution time and/or the energy efficiency of the UAV) and finally the detection
probability to be maintained during the mission i.e., the generated UAV search
trajectory is computed in such a way so that the probability of detecting survivors
during the mission is maintained within the required user specified level.

Finally, the above specifications are transformed using mathematical program-
ming techniques into a mixed integer quadratic program (MIQP) which is solved
exactly using standard off-the-shelf solvers. The output of the proposed framework
is an optimal search plan (i.e., a sequence of low-level UAV control inputs over a
finite horizon 𝑇 which meet the mission requirements and optimize the mission
objectives).

4 System Model

4.1 Agent Dynamics

In this work we assume that the UAV agent evolves in 3D space according to the
following discrete-time linear dynamical model:

𝑥𝑡 = Φ𝑥𝑡−1 +Γ[𝑢𝑡−1 − 𝑢𝑔] (1)

where 𝑥𝑡 = [x, ẋ]⊤𝑡 ∈ R6 denotes the agent’s state at time 𝑡 which consists of position
x𝑡 = [𝑝𝑥, 𝑝𝑦, 𝑝𝑧 ]𝑡 ∈ R3 and velocity ẋ𝑡 = [𝜈𝑥, 𝜈𝑦, 𝜈𝑧 ]𝑡 ∈ R3 components in 3D cartesian
coordinates. The agent can be controlled by applying an amount of force 𝑢𝑡 ∈ R in
each dimension, thus 𝑢𝑡 = [u𝑥,u𝑦,u𝑧 ]⊤𝑡 denotes the applied force vector at 𝑡 and the
constant 𝑢𝑔 = [0, 0,𝑚𝑔]⊤ denotes the force of gravity where 𝑔 = 9.81m/s2 is the
Earth’s gravitational acceleration and 𝑚 is the agent mass. The matrices Φ and Γ
are given by:

Φ =

[︂
I3×3 Δ𝑇 · I3×3

03×3 𝜑 · I3×3

]︂
, Γ =

[︂
03×3

𝛾 · I3×3

]︂
(2)

where Δ𝑇 is the sampling interval, I3×3 is the identity matrix of dimension 3× 3
and 03×3 is the zero matrix of dimension 3× 3. The parameters 𝜑 and 𝛾 are further
given by 𝜑 = (1− 𝜂) and 𝛾 = 𝑚−1Δ𝑇 , and the parameter 𝜂 is used to model the air
resistance.

4.2 Agent Sensing Model

The agent is equipped with an onboard camera taking snapshots of the objects of
interest in order to search for survivors or people in need. Without loss of generality,
we assume in this work that the camera field of view (FoV) angles in the horizontal
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Fig. 3 The figure illustrates the agent sensing model discussed in Sec. 4.2. a) the geometry
of the UAV onboard camera FoV according to Eqn. (3), b) an intuitive representation of the
probability of detection 𝑝𝑑(𝑑) as a function of the distance between the agent and the face to be
searched, c) the probability of detection model used in this work.

and vertical axis are equal [38] and thus the projected FoV footprint on a planar
surface is square with side length 𝑟 and given by:

𝑟(𝑑) = 2𝑑 tan
(︁
𝜙

2

)︁
(3)

where 𝑑 denotes the distance in meters between the location of agent and the surface
of the object that needs to be searched and 𝜙 is the angle opening of the FoV
according to the camera specifications. Thus the area of the FoV footprint at a
distance 𝑑 is 𝑟(𝑑)2 meters. Before taking a snapshot of the object of interest the
agent first aligns its camera with respect to the surface in such a way so that the
optical axis of the camera (i.e., the viewing direction) is parallel to the normal
vector (𝛼) of the surface as depicted in Fig. 3a.

In order to search an object of interest the agent needs to take multiple snapshots
(according to the size of the FoV as given by Eqn. (3)) such that each face of the
object is completely included in the acquired images. The acquired images are then
processed by an image processing module in order to determine the presence of
people. The confidence of the search-task (i.e., how well people are detected) mainly
depends on the quality of the acquired frames and on the size of the FoV.

Intuitively, the FoV footprint increases as the distance between the agent’s
location and the surface to be searched increases, allowing the agent to capture
a larger area of the object of interest. However, the amount of detail captured in
those images inversely decreases with the size of the FoV and as a consequence
the probability of detecting people decreases due to insufficient pixel density. On
the other hand, as the distance between the agent and the surface decreases the
probability of detecting people in the captured frames increases, however the size of
the FoV footprint decreases and thus less area is covered. That said, we define the
confidence of the search task (i.e., the search confidence) as:

𝑞(𝑑) ∼ 𝑝𝑑(𝑑)×
𝑟2(𝑑)

m2
(4)

where 𝑝𝑑(𝑑) ∈ [0, 1] is the probability of detecting people in images captured at
distance 𝑑 meters from the object of interest and 𝑟2(𝑑) denotes the area of the
camera’s FoV (in squared meters i.e., m2) at distance 𝑑 from the object of interest
as given in Eqn. (3).

We assume that the probability of detection is given by a piecewise linear function
composed of 3 pieces ℓ1, ℓ2 and ℓ3 as shown in Fig. 3b. Our assumptions here are
the following a) when the agent is at distance 𝑑 = 0 from the object of interest, the
probability of detecting people in the acquired frame should be zero. This is because
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the size of the camera FoV vanishes at 𝑑 = 0. Thereafter, we assume that as the
distance between the agent and the object of interest increases the probability of
detection increases until it reaches its maximum value at some distance 𝑑1. In other
words as the FoV size increases, the amount of information included in the acquired
images increases as well, and as a result the probability of detection increases until it
reaches it’s maximum value, b) there is a range i.e., 𝑑1 to 𝑑2 in where the probability
of detection remains constant and equal to the maximum value. In other words when
the agent is at distance 𝑑 ∈ [𝑑1, 𝑑2] the probability of detection does not depends on
the FoV size (i.e., the pixel density in the acquired images is optimal with respect to
the people detection process and further increase in the FoV size does not improve
the results of this process) and c) after some distance 𝑑2 the probability of detection
drops as the FoV size increases. In this case the number of pixels that are used
to represent people in the image frame drops significantly, and as a result people
cannot be detected due to insufficient pixel density. Equivalently, the probability of
detection 𝑝𝑑(𝑑) (based on the assumptions discussed above) can also be defined as:

𝑝𝑑(𝑑) =

{︃
0 , if 𝑑 ≤ 𝑑min

max(0, 1− 𝑑−𝑑min
𝑑max−𝑑min

) , if 𝑑 > 𝑑min
(5)

where 𝑑min and 𝑑max are the minimum and maximum camera working distance
for detecting people in the acquired frames. In order to see this first observe from
Fig. 3b that the agent has no incentive to position itself at a distance less than 𝑑1
when maximizing the search confidence 𝑞(𝑑) since 𝑞(𝑑1) > 𝑞(𝑑), ∀𝑑 ∈ [0, 𝑑1). For this
reason the line piece ℓ1 disappears as shown in Fig. 3c. Similarly, the line segment 𝑙2
collapses to a point since the agent will always prefer 𝑞(𝑑2) over 𝑞(𝑑),∀𝑑 ∈ [𝑑1, 𝑑2).
Thus the final form of 𝑝𝑑(𝑑) which we use in this work is given by Eqn. (5) and
shown in Fig. 3c.

In Sec. 5 we show how we have incorporated the detection probability constraint
into our mathematical programming formulation in order to generate optimal
search plans that guide the UAV agent to search a specific object of interest while
maintaining the required detection probability.

4.3 Object Representation

We consider a bounded 3D environment which contains two types of objects: a)
obstacles that need to be avoided and b) objects of interest that need to be searched
in 3D (i.e., searching the area of all their faces). All types of objects inside the
surveillance environment are constructed using 3D primitives or building blocks. In
this work these building blocks are rectangular cuboids of various sizes (referred to as
simple cuboids). A rectangular cuboid is a convex hexahedron in three dimensional
space which exhibits six rectangular faces (i.e., where each pair of adjacent faces
meets in a right angle). More specifically, let a plane 𝒫 in 3D space be given by the
set of points 𝑥 ∈ R3 which satisfy:

𝒫 = {𝑥 ∈ R3 : 𝛼⊤ · 𝑥 = 𝑏} (6)

where 𝛼⊤ ·𝑥 is the dot product of the outward normal 𝛼⊤ = [𝛼𝑥, 𝛼𝑦, 𝛼𝑧 ] on the plane
with the point 𝑥 and 𝑏 is a constant. The plane 𝒫 divides R3 into two half-spaces
i.e., the negative half-space 𝒫− = {𝑥 ∈ R3 : 𝛼⊤ · 𝑥 < 𝑏} and the positive half-space
𝒫+ = {𝑥 ∈ R3 : 𝛼⊤ · 𝑥 > 𝑏}.
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A rectangular cuboid 𝒞 which is composed of six rectangular faces 𝑓𝑖, 𝑖 ∈ [1, .., 6]
can then be defined as the intersection of the six negative half-spaces:

𝒞 =
{︁
𝑥 ∈ R3 : 𝑥 ∈

⋂︁6

𝑖=1
𝒫−
𝑖

}︁
(7)

where each pair of adjacent planes (𝒫𝑖,𝒫𝑗 , 𝑖 ̸= 𝑗), which form the aforementioned
half-spaces, intersect at right angles. The dimensions of the cuboid (i.e., length,
height, depth) are given by 𝜎(𝒞) = [𝒞𝑙, 𝒞ℎ, 𝒞𝑑]. The set of faces which is used to
compose the cuboid 𝒞 is denoted as 𝒞𝑓 =

⋃︀6
𝑖=1{𝑓𝑖} and the dimensions (i.e., length

and width) of each face is given by 𝜎(𝑓𝑖) = [𝑙, 𝑤] ⊂ 𝜎(𝒞).
Using simple cuboids we can construct more complex objects i.e., compound

objects. A compound object 𝒞 with length |𝒞| is defined as the union of |𝒞| simple
cuboids:

𝒞 =
⋃︁|𝒞|

𝑖=1
𝒞𝑖 (8)

and the set of faces of 𝒞 is given by 𝒞𝑓 =
⋃︀|𝒞|
𝑖=1 𝒞

𝑓
𝑖 . That said, in this framework all

objects (i.e., obstacles and objects of interests) are modeled either as simple cuboids
or as compound objects. Our choice to use rectangular cuboids is twofold. First, it
allows us to model a variety of object classes without compromising the level of
detail, and secondly it allows us to formulate the search planning problem as a Mixed
Integer Quadratic Program (MIQP) and solve it exactly using standard solvers.
Additionally, we should point out that in this work we build on the assumption
that a 3D map of the environment is readily available prior to planning i.e., the
surveillance region has been 3D mapped [31, 37, 10, 14] and subsequently the objects
of interest and obstacles have been represented as cuboids.

5 Unified Search Planning Framework

In this section we describe in detail the proposed Search Planning framework which
is used to automate the search phase of a SAR mission. More specifically, in this
section we will discuss how the proposed framework takes into account the low-level
mission constrains (i.e., UAV dynamical and sensing model discussed in Sec. 4), the
mission objectives and finally the mission specifications. At this phase all objects
inside the environment are modeled as simple cuboids or compound objects. In
addition, the human expert specifies a) the agent start position, b) the goal region 𝒢
to be reached at the end of the mission, c) the planning horizon 𝑇 and finally d) the
minimum required probability of detection 𝒬 to be maintained during the mission.

5.1 Mission Objectives

The main goal of a search mission is to search as efficiently as possible the target
area for people in need. Thus the main objectives of the UAV-based search mission
considered in this framework are a) the optimization of the mission’s execution
time (i.e., we would like to minimize the required search time while satisfying the
mission constraints) and b) the optimization of the UAV’s energy efficiency during
the mission (i.e., to operate the UAV in an energy efficient manner).
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Fig. 4 The figure illustrates the projected FoV shape (i.e., 𝑟𝑖 × 𝑟𝑖 square) as a function of the
distance (i.e., 𝑑𝑖) between the UAV agent and the object of interest. Assuming the distance 𝑑𝑖 is
kept constant, the UAV agent must scan each cell of the shown grid in order to search the total
area of the face.

In order to handle the aforementioned objectives we define the required objective
function as the weighted combination of two terms, namely: the Path Error Penalty
(PEP) and the Input Fluctuation Penalty (IFP):

Path Error Penalty: 𝑒𝑇 =
𝑇∑︁
𝑡=1

||𝐻𝑥𝑡 − 𝑥goal||22 (9)

Input Fluctuation Penalty: 𝛿𝑇 =
𝑇−1∑︁
𝑡=1

||𝑢𝑡 − 𝑢𝑡−1||22 (10)

where 𝑇 is the planning horizon (i.e., the total amount of time allocated for the
mission), 𝐻 is a matrix which extracts the position vector from the agent’s state
vector and 𝑥goal ∈ 𝒢 is the location of a point which belongs to the goal region and
which the agent must reach at the end of the mission.

As we can observe from Eqn. (9), the Path Error Penalty minimizes the sum
of errors between the position of the agent 𝐻𝑥𝑡 and the desired goal location
𝑥goal, which effectively drives the agent to finish the mission inside the goal region.
Additionally, this objective forces the agent to reach the goal position as soon as
possible i.e., at the earliest time-step. For this reason, the minimization of PEP also
minimizes the search operation execution time.

On the other hand, the Input Fluctuation Penalty in Eqn. (10) is used in order to
minimize the fluctuations between consecutive control inputs thus leading to smoother
trajectories (i.e., smooth trajectories with less abrupt changes). Additionally, in
this work we consider that the minimization of the UAV’s control input variation
is directly related to the reduction of the UAV’s energy consumption. We assume
that by reducing the variation between consecutive controls, abrupt changes in the
control input are eliminated, leading to more energy efficient operation. Overall, the
objective function of the search mission is defined as:

min
𝑢0:𝑇−1

ℎ(𝑥1:𝑇 , 𝑢0:𝑇−1) = 𝑤1𝑒𝑇 + 𝑤2𝛿𝑇 (11)

where the weights 𝑤1 and 𝑤2 are chosen by the human operator according to the
mission requirements and in essence determine the emphasis given between the
mission execution time and the mission energy efficiency.

5.2 3D Search Task

We can now describe how the proposed framework handles the 3D search task. More
specifically, the objective here is to devise a search plan (i.e., a UAV trajectory) that
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by taking into account the UAV sensing model discussed in Sec. 4.2, will guide the
UAV agent to search all faces (i.e., use the onboard camera module to scan the total
area of each face) of an object of interest (which is represented as a simple cuboid 𝒞
or as a compound object 𝒞). To further illustrate this idea observe in Fig. 4 that the
camera FoV size i.e., a square 𝑟 × 𝑟, depends on the distance 𝑑 between the UAV
agent and the object of interest. Assuming that the UAV maintains its distance 𝑑
from the object of interest, a particular face is searched when the UAV visits all
cells of the grid shown in Fig. 4. To implement the 3D search task, we compute the
aforementioned grid for multiple values of the distance 𝑑 and we generate 3D zones
which are composed of simple cuboids. We then use mathematical programming
techniques to guide the UAV agent through the generated 3D zones. By doing so,
we constrain the position of the UAV over time to reside inside a particular set of
cuboids which results in FoV projections which include the area of each cell, thus
accomplishing the searching of the whole face of the object of interest. This process
is performed from each face that needs to be searched.

In essence, we discretize the area around the object of interest we wish to search
by creating 3D zones at various distances according to the agent sensing model.
Then we use mathematical programming techniques to guide the UAV through
these 3D zones in order to search the object of interest. Next we discuss the details
of the proposed 3D searching technique.

5.2.1 3D Zone Construction

A 3D zone 𝒵 with length |𝒵| is a compound object (i.e., a union of simple cuboids
𝒵) defined as:

𝒵 =
⋃︁|𝒵|

𝑖=1
𝒵𝑖 (12)

which is created by the proposed framework around each object of interest to aid
the 3D search task. All the simple cuboids that belong to 𝒵 are of the same size i.e.,
𝜎(𝒵1) = 𝜎(𝒵2) = · · · = 𝜎(𝒵|𝒵|). Additionally, these simple cuboids 𝒵𝑖 have size of
the form 𝜎(𝒵𝑖) = [𝑟, 𝑟,𝐷] i.e., at least one pair of opposite faces is square. Let us
denote one of the faces 𝑓𝒵 ∈ 𝒵𝑓 (of the cuboid 𝒵) with size 𝑟 × 𝑟 as 𝑓𝑟𝒵 (we have
dropped the indexing on the cuboids since all cuboids in a zone are the same).

The value of 𝑟 of 𝑓𝑟𝒵 is determined by Eqn. (3) i.e., 𝑟 is given by the side length
of the camera FoV when the agent is at distance 𝑑 from an object of interest. On
the other hand, the value of 𝐷 determines the depth of the cuboid. The parameter
𝐷 also determines the depth of the zone 𝒵 thus for this reason it is also referred to
as the zone depth 𝒵𝐷.

The length |𝒵| of a zone 𝒵 (i.e., how many cuboids the zone contains) is
determined by the number of cuboids that need to be placed around the object of
interest to enable the UAV agent to search all its faces. In essence the number of
cuboids contained in a zone is equal to the number of grid cells (i.e., as shown in
Fig. 4) times the number of faces that need to be searched.

Let the object of interest to be searched be denoted by the simple cuboid ℛ
with size 𝜎(ℛ) = [ℛ𝑙,ℛ𝑤,ℛ𝑑] and set of faces given by ℛ𝑓 . This cuboid contains
3 pair of faces with sizes ℛ𝑙 ×ℛ𝑤, ℛ𝑙 ×ℛ𝑑 and ℛ𝑤 ×ℛ𝑑 respectively. To enable
the 3D search of ℛ from a particular distance 𝑑 we generate a zone of cuboids
around ℛ and we guide the UAV agent through the zone. More specifically, for
each face 𝑓𝑖 ∈ ℛ𝑓 , with size 𝜎(𝑓𝑖) ∈ {[ℛ𝑙,ℛ𝑤], [ℛ𝑙,ℛ𝑑], [ℛ𝑤,ℛ𝑑]} we find how many
non-overlapping faces 𝑓𝑟𝒵 ∈ 𝒵𝑓 with square shape 𝑟(𝑑)× 𝑟(𝑑) of the cuboid 𝒵 ∈ 𝒵
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Fig. 5 The figure illustrates the 3D zone construction step discussed in Sec. 5.2 which enables
the 3D search planning of an object of interest. a) The figure shows the discretization of the
detection probability, i.e., Eqn. (5), into 𝒩 = 3 zones 𝒵1, 𝒵2 and 𝒵3 depicted in green, blue
and red color respectively. The 3 zones have depth values 𝐷1, 𝐷2 and 𝐷3 as illustrated and
detection probability values 𝑝𝑑(𝒵1), 𝑝𝑑(𝒵2) and 𝑝𝑑(𝒵3). Moreover, the 3 zones 𝒵1, 𝒵2 and 𝒵3

are placed at distances of 𝑑1, 𝑑2 and 𝑑3 respectively from the object of interest. b) The figure
shows the zone construction step (for the face 𝑓𝑖 ∈ ℛ𝑓 ) of the object of interest 𝑅. Zones 1, 2
and 3 have lengths of |𝒵1| = 9, |𝒵2| = 4 and |𝒵3| = 1 as illustrated in this example. The size of
the cuboids in each zone i.e., 𝜎(𝒵𝑖) = [𝑟𝑖, 𝑟𝑖, 𝐷𝑖] is determined by the size of the FoV footprint
at distance 𝑑𝑖 (computed using Eqn. (3)) from the object of interest ℛ and from the depth of
the zone. Please note that in the illustration above we show the zone construction step for only
one face. In order to search the object in 3D the 3 zones will be expanded to cover all 5 faces.

with size 𝜎(𝒵) = [𝑟(𝑑), 𝑟(𝑑), 𝐷] are needed to fully cover 𝑓𝑖. We should point out
here that the above procedure assumes that 𝑓𝑟𝒵 ‖ 𝑓𝑖 i.e., a cuboid 𝒵 is placed in
such a way so that its face 𝑓𝑟𝒵 is parallel to the face 𝑓𝑖 that must be searched. The
above procedure is repeated for different values of 𝑑.

What we have discussed so far allows us to determine the length of a zone 𝒵.
Next we discuss how we determine the sizes of the cuboids inside the zones and how
we choose the number of zones.

As we have briefly discussed we create 3D zones around the object of interest
in order to allow the UAV agent to pass through them and search in 3D all the
faces of the object. In essence these 3D zones can be considered as a discretized
version of the agent search confidence i.e., Eqn. (4). This discretization is employed
in this work because it allows us to easily incorporate the functionality supported
by Eqn. (3) and Eqn. (5) into our mathematical programming framework and use
standard solvers to tackle the derived mixed integer quadratic program (MIQP)
program. That said, the number of zones 𝒩 to be created is user-defined and in
essence determines the granularity of the discretization of the space around the
object of interest.

To be more precise, we assign to each zone 𝒵𝑖 a depth value 𝐷𝑖 and a value
𝑝𝑑(𝒵𝑖) for the probability of detection by quantizing the domain and range of Eqn.
(5) into 𝒩 components. In essence, the domain of Eqn. (5) is partitioned into 𝒩
regions and the length of each of those regions determines the depth 𝐷𝑖 of each
zone. Equivalently, the values of 𝑝𝑑(𝑑) at the partitioned regions are assigned as the
values of the detection probability achievable in each zone i.e., 𝑝𝑑(𝑍𝑖) as illustrated
in Fig. 5a. That said, the cuboids in each zone 𝑖 have size [𝑟𝑖, 𝑟𝑖, 𝐷𝑖] where 𝐷𝑖 is
determined by the zone depth and 𝑟𝑖 is derived by computing the distance between
the cuboid and the object of interest and applying Eqn. (3).

For the 3D search task we generate a set of 3D zones 𝒵𝑖, around the object
of interest, each of which is placed at a distance 𝑑𝑖 from the object. Each zone is
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assigned a detection probability value which corresponds to the detection probability
that is achievable at distance 𝑑𝑖 according to Eqn. (5). Additionally, each zone has
depth 𝐷𝑖 which has been computed by partitioning the domain of Eqn. (5) into 𝒩
regions. Finally, each zone 𝒵𝑖 is composed of |𝒵𝑖| cuboids of the same size. The
length of each zone |𝒵𝑖| is determined by how many simple cuboids are needed
to cover the object faces. The size of the cuboids is determined by the size of the
FoV footprint at distance 𝑑𝑖 from the object and from the depth of the zone. The
procedure discussed above is illustrated in Fig. 5b.

Finally, the agent can search in 3D the object of interest by passing through
the appropriate 3D zone (i.e., visit all cuboids contained in the zone) according to
the required detection probability which is specified by the human operator. The
way that the detection probability is being discretized and the formation of the
various zones around the objects of interest is according to the mission specifications
and the mission goals i.e., the number and size of the 3D zones are such that the
mission-specific required detection probability levels are captured.

We should point out here that in order to make sure that the projected FoV of
the UAV agent (at a particular time instance when the agent resides inside a cuboid)
completely covers the corresponding grid cell on the surface of the object of interest
(e.g., Fig. 4), in our implementation we require the agent to pass approximately
from the center of each cuboid. Equivalently, we require the agent to pass through
an interior cube centered inside each cuboid. This is depicted in Fig. 6. In Sec. 5.2.2
we show how we encode the above constraints.

To summarize, we generate 3D grids at various distances with respect to the
faces that need to be searched. By guiding the agent to visit each cell of this 3D
grid, we make sure that the total projected FoV captures the whole area of the face.
Which 3D grid the agent will visit depends on the required detection probability.

5.2.2 3D Search Constraints

We can now describe how we have encoded the 3D search task into mathematical
programming constraints (shown in Alg. 1). In essence, we would like to make
sure that the UAV agent will pass through the appropriate zone 𝒵𝑖 during the
mission (i.e., traversing each interior cube of every simple cuboid 𝒵 ∈ 𝒵𝑖 inside
the appropriate zone) thus searching in 3D the object of interest. We should point
out here that from which zone 𝒵𝑖 the agent will go through depends on the user
defined detection probability 𝒬. In order to simplify the notation, and without
loss of generality, we describe the 3D search task for one object of interest. The
constraints in Eqn. (13)-(18) which implement the 3D search task however, can be
easily extended to handle multiple objects of interest.

Let us assume that the 3D zone construction procedure discussed earlier has
generated zones 𝒵𝑖, 𝑖 ∈ [1, ..,𝒩 ] (around the object of interest) where each zone 𝒵𝑖
is composed of cuboids 𝒵𝑐, 𝑐 ∈ [1, .., |𝒵𝑖|] where each cuboid 𝒵𝑐 contains an interior
cube 𝒴𝑐 which has 𝐿 = 6 faces.

Assuming that the total duration of the mission can take up to 𝑇 time steps,
we define the binary variable 𝑧𝑡𝑙𝑐𝑖 which at time 𝑡 ∈ [1, .., 𝑇 ] points to the face
𝑙 ∈ [1, .., 𝐿] of the interior cube 𝒴𝑐, 𝑐 ∈ [1, .., |𝒵𝑖|] of cuboid 𝒵𝑐 of zone 𝑖 ∈ [1, ..,𝒩 ].
The binary variable 𝑧𝑡𝑐𝑖 points to the interior cube 𝒴𝑐, 𝑐 ∈ [1, .., |𝒵𝑖|] of cuboid 𝒵𝑐 of
zone 𝑖 at time 𝑡 and finally the binary variable 𝑧𝑖 activates the 𝑖th zone.

With the above definitions and in order to accomplish the 3D search task, we
first check with constraint Eqn. (13) whether the agent position 𝐻𝑥𝑡 resides inside
the negative half-space 𝒫−

𝑙𝑐𝑖 = {𝐻𝑥𝑡 ∈ R3 : 𝛼⊤
𝑙𝑐𝑖 ·𝐻𝑥𝑡 ≤ 𝑏𝑙𝑐𝑖} created by the plane
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Fig. 6 The figure illustrates the interior cubes (gray) centered inside the cuboids (green). By
passing through each cube the UAV agent makes sure that the whole area of the face is searched
i.e., the projected FoV from within a cube encloses the area of the corresponding grid cell on the
face’s surface as shown in the figure.

Algorithm 1 3D Search Task

𝛼⊤
𝑙𝑐𝑖𝐻𝑥𝑡 + (𝑀 − 𝑏𝑙𝑐𝑖)𝑧𝑡𝑙𝑐𝑖 ≤ 𝑀, ∀𝑡, 𝑙, 𝑐, 𝑖 (13)

𝐿𝑧𝑡𝑐𝑖 −
𝐿∑︁

𝑙=1

𝑧𝑡𝑙𝑐𝑖 ≤ 0, ∀𝑡, 𝑐, 𝑖 (14)

−
𝑇∑︁

𝑡=1

𝑧𝑡𝑐𝑖 + 𝑧𝑖 ≤ 0, ∀𝑖, 𝑐 (15)

−
𝑇∑︁

𝑡=1

|𝒵𝑖|∑︁
𝑐=1

𝑧𝑡𝑐𝑖 + |𝒵𝑖|𝑧𝑖 ≤ 0, ∀𝑖 (16)

−
𝒩∑︁
𝑖=1

𝑧𝑖𝑝𝑑(𝒵𝑖) ≤ −𝒬, ∀𝑖 (17)

𝒩∑︁
𝑖=1

𝑧𝑖 ≤ 1, ∀𝑖 (18)

𝒫𝑙𝑐𝑖 of the 𝑙th face of the interior cube 𝒴𝑐, 𝑐 ∈ [1, .., |𝒵𝑖|] of cuboid 𝒵𝑐 of zone 𝑖. If the
constraint is satisfied the binary variable 𝑧𝑡𝑙𝑐𝑖 is activated, otherwise we make sure
that the inequality is still valid using big-M techniques (i.e., 𝑀 is a large positive
constant to make sure that the inequality is valid at all times). Then constraint in
Eqn. (14) checks whether the agent resides inside the interior cube 𝒴𝑐 of cuboid
𝒵𝑐 of zone 𝑖 at time-step 𝑡. In essence, this constraint implements Eqn. (7) and
activates the binary variable 𝑧𝑡𝑐𝑖 if the agent position resides inside the interior
cube of the desired cuboid.

The constraint in Eqn. (15) makes sure that each of the interior cubes of all
cuboids, which belong to a specific zone, will be visited at least once during the
duration 𝑇 of the mission and subsequently the constraint in Eqn. (16) ensures
that the agent will visit all |𝒵𝑖| cuboids and their corresponding interior cubes of
the selected zone 𝒵𝑖 indicated by the binary variable 𝑧𝑖. These two constraints in
essence make sure that the object will be searched completely in 3D (i.e., by visiting
all different cuboids in a zone, all faces of the objects are searched).
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As we have already explained previously in this section each zone is assigned
a detection probability value 𝑝𝑑(𝒵𝑖) (where in this notation 𝑝𝑑(𝒵𝑖) denotes the
detection probability value indicated by the binary variable 𝑧𝑖) which depends on
the distance between the zone and the object of interest. The constraint in Eqn.
(17) selects the zone 𝑖 which achieves the specified detection probability 𝒬 requested
by the human operator and activates the binary variable 𝑧𝑖. Finally, the constraint
in Eqn. (18) makes sure that only one zone is selected. To summarize, Alg. 1 makes
sure that the appropriate 3D zone is selected which achieves a detection probability
at least 𝒬 and that all the cuboids inside the selected zone are visited.

5.3 Obstacle Avoidance Task

The obstacles considered in this work are modeled as simple cuboids 𝒞 or compound
objects 𝒞. The objective of the obstacle avoidance task is to constrain the generated
path within the free-space region, thus enabling the agent to avoid collisions with
the obstacles. Let us assume for the sake of notational convenience that the obstacles
are modeled as simple cuboids 𝒞𝜓, 𝜓 ∈ Ψ where Ψ ⊂ Ξ ∪ 𝐽 i.e., the agent should
avoid collisions not only with the obstacles Ξ in the environment but also with the
objects of interest 𝐽 . Thus, the obstacle avoidance task is accomplished when the
agent position 𝐻𝑥𝑡 satisfies:

𝐻𝑥𝑡 /∈ 𝒞𝜓, ∀𝜓 ∈ Ψ, 𝑡 ∈ [1, .., 𝑇 ] (19)

Thus we need to ensure that the agent resides outside the cuboid(s) that form
the obstacles at all times. The obstacle avoidance constrains can thus be written
with the constraints in Eqn. (20)-(21):

−𝛼⊤
𝜓𝑙𝐻𝑥𝑡 −𝑀𝜀𝑡𝜓𝑙 ≤ −𝑏𝜓𝑙, ∀𝑡, 𝜓, 𝑙 (20)

𝐿∑︁
𝑙=1

𝜀𝑡𝜓𝑙 ≤ 𝐿− 1, ∀𝑡, 𝜓 (21)

where we use the binary variable 𝜀𝑡𝜓𝑙 to index the face 𝑙 ∈ [1, .., 𝐿] of obstacle 𝜓 ∈ Ψ
at time-step 𝑡 ∈ [1, .., 𝑇 ]. The constraint in Eqn. (20) assigns a zero value to 𝜀𝑡𝜓𝑙
when the agent position 𝐻(𝑥𝑡) belongs to the positive half-space formed by the
plane 𝒫𝜓𝑙 = {𝐻𝑥𝑡 ∈ R3 : 𝛼⊤

𝜓𝑙 ·𝐻𝑥𝑡 = 𝑏𝜓𝑙}. Otherwise, the agent position belongs
to the negative half-space thus 𝜀𝑡𝜓𝑙 is activated to make sure that the inequality
is satisfied when 𝑀 is a large constant. Then the constraint in Eqn. (21) makes
sure that a collision is avoided for all obstacles and time-steps by ensuring that the
number of times 𝜀𝑡𝜓𝑙 is activated for a specific 𝜓 and 𝑡 is less than 𝐿− 1. In other
words a collision is avoided when ∃ 𝑙 ∈ [1, .., 𝐿] : 𝛼⊤

𝜓𝑙𝐻𝑥𝑡 > 𝑏𝜓𝑙.

5.4 Reach Goal Region Task

The objective of this task is to allow the agent to reach the goal region (e.g., landing
pad or re-charging station) during a pre-specified time-window [𝜏, .., 𝑇 ] or at the end
of the mission 𝑇 . Let the goal region be represented by a user specified simple cuboid
𝒢 with 𝐿 = 6 faces, then the objective is to make sure that the UAV agent will
reside inside 𝒢 at the end of the mission or reach 𝒢 during the time-window [𝜏, .., 𝑇 ].
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In essence, the constrains that are used to mathematically implement this task are
exactly the opposite of those in obstacle avoidance which have been described in the
previous paragraph. More specifically, the reach goal task is given by the constraints
in Eqn. (22)-(24):

𝛼⊤
𝑙 𝐻𝑥𝑡 + (𝑀 − 𝑏𝑙)𝑦𝑡𝑙 ≤𝑀, ∀𝑡, 𝑙 (22)

𝐿𝑦𝑡 −
𝐿∑︁
𝑙=1

𝑦𝑡𝑙 ≤ 0, ∀𝑡 (23)

−
𝑇∑︁
𝑡=𝜏

𝑦𝑡 ≤ −1 (24)

More specifically, the binary variable 𝑦𝑡𝑙, 𝑡 ∈ [1, ..𝑇 ], 𝑙 ∈ [1.., 𝐿] which appears in
Eqn. (22) is activated when the agent position resides inside the negative half-space
formed by the 𝑙th plane with equation 𝛼⊤

𝑙 𝐻𝑥𝑡 ≤ 𝑏𝑙. Then the binary variable 𝑦𝑡 in
Eqn (23) is activated when the agent is inside the goal region at time-step 𝑡. Finally,
the constraint in Eqn. (24) ensures that the goal region is visited at least once inside
the time-window [𝜏, .., 𝑇 ].

The final MIQP (P2) for the entire 3D search planning phase is shown in Alg. 2,
where the mission objective is due to Eqn. (11), the agent dynamics are according
to Eqn. (1) as described in Sec. 4 assuming a known initial state 𝑥0 and a fixed
planning horizon 𝑇 . Then the constraints in Eqn. (13)-(18) are responsible for
the 3D search task of an object of interest, Eqn. (20)-(21) implement the obstacle
avoidance task and finally Eqn. (22)-(24) guide the agent to the goal region.

Algorithm 2 Unified Search Planning Framework

(P2) min
𝑢0:𝑇−1

ℎ(𝑥1:𝑇 , 𝑢0:𝑇−1) = 𝑤1𝑒𝑇 + 𝑤2𝛿𝑇

s.t. 𝑥𝑡 = Φ𝑡𝑥0 +

𝑡−1∑︁
𝜏=0

Φ𝜏Γ[𝑢𝑡−𝜏−1 − 𝑢𝑔 ], ∀𝑡 ∈ [1, .., 𝑇 ]

Eqn. (13)− (18) (3D search task)
Eqn. (20)− (21) (Obstacle avoidance task)
Eqn. (22)− (24) (Reach goal region task)

In this work we have presented a search planning framework for searching objects
of interest in 3D. We generate plans that guide an autonomous UAV agent to pass
through a series of artificially generated cuboids, in order to search the faces of an
object of interest with the specified detection probability, while at the same time
avoiding collisions with obstacles in the environment. The proposed search-planning
framework is flexible and it can be generalized for a variety of planning scenarios. An
overview of the main requirements and key features of the proposed approach are the
following: (a) The proposed method requires a known (i.e., size and location) cuboid
representation of the objects of interest and obstacles in the environment. This
cuboid representation however, can be easily be obtained from environmental 3D
maps i.e., [31, 37, 10, 14]. (b) The 3D zone construction step discussed in Sec. 5.2.1
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and illustrated in Fig. 5 takes place prior to mission planning and requires a known
set of detection probability values that will be used during search planning. This set
of detection probability values is mission specific and determined by the mission
control according to the SAR mission requirements (i.e., depending on the severity
or the importance of the search task). (c) As it will be shown in Sec. 6, the proposed
framework can then be used to generate the optimal trajectory which guides the
UAV agent through the generated 3D zones in such a way so that the object of
interest is searched according to the user specified detection probability. In addition
as it will be demonstrated in the evaluation, the mission objective can be tuned
accordingly (i.e., with respect to the SAR mission requirements) to configure the
emphasis given between the mission execution time and the UAV energy efficiency.

Although, in this work we have focused in the task of searching the faces of an
object of interest, the proposed framework can be easily extended to support other
tasks which can potentially arise in a SAR mission. These include searching for
survivors inside buildings and under rubble and debris of demolished buildings in
the event of earthquakes or other man-made or natural disasters.

In the case of searching for survivors inside a building, the 3D zone generation
step described in Sec. 5.2.1, and the 3D search constraints i.e., Sec. 5.2.2 can be
applied indoors, by generating and placing artificial cuboids in the locations/areas
that need to be searched by the UAV agent while optimizing the objective function
of Eqn. (11) i.e., mission execution time and UAV energy efficiency. Subsequently,
the obstacle avoidance constrains of Sec. 5.3 can be applied to account for the walls
of the building and the reach goal constraints i.e., Sec. 5.4 can be used in order
for the UAV to exit the building at the end of the mission. Moreover, in the case
where the UAV agent is equipped with thermal/infra-red cameras and advanced
imaging sensors, the proposed approach can be utilized to search for survivors
under rubble and debris, by guiding the UAV agent through a series of artificially
generated cuboids placed in selected locations above and around the rubble, acting
as waypoints, allowing the UAV agent to detect heat signatures at a distance from
above.

This concludes the description of the proposed search planning framework. Next
we present the experimental evaluation of the proposed approach using a variety of
simulated search scenarios.

6 Evaluation

6.1 Experimental Setup

To evaluate the performance of the proposed search planning framework we conduct
several synthetic experiments. In each experiment we evaluate the proposed approach
either qualitatively or quantitatively and we discuss its strengths and weaknesses.
The experimental evaluation is divided into four parts. In the first part we present
the overall behavior of the proposed search planning framework focusing on the
3D search task (i.e. Sec. 5.2) including the 3D Zone Construction and 3D search
constraints. Next, in part 2 we show how the mission objective discussed in Sec. 5.1
affects the search planning behavior of the agent. In part 3 of our evaluation, we
demonstrate the performance of proposed search planning framework in the presence
of obstacles and finally we conclude with a discussion regarding the computational
complexity of the proposed framework and future directions.
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Fig. 7 The figure illustrates the 3D Zone construction step used in our experiments. a) The
probability of detection has been discretized into 3 zones, b) The area discretization around the
object of interest and the formation of 3 zones (i.e., green, blue and red).

The experimental setup used for the evaluation of the proposed system is as
follows: The agent dynamics are expressed by Eqn. (1) with Δ𝑇 = 1s, agent mass
𝑚 = 3.35kg and air resistance coefficient 𝜂 = 0.2. The applied control input (i.e.,
input force) 𝑢𝑡 = [u𝑥,u𝑦,u𝑧] is bounded within the intervals [−35, 35]N, [−35, 35]N
and [−10, 35]N in 𝑥, 𝑦 and 𝑧 dimension respectively, the agent velocity ẋ = [𝜈𝑥, 𝜈𝑦, 𝜈𝑧 ]
is bounded in each dimension within the interval [−15, 15]m/s and the agent FoV
angle 𝜑 is 60deg. Simulations were conducted on an 2GHz dual core CPU running
the Gurobi V8 MIQP solver.

6.2 Simulation Results

6.2.1 3D Search task

The first experiment aims to demonstrate the 3D search task discussed in Sec. 5.2
for a building represented as a cuboid with size 60m × 60m × 60m. The overall
objective of the agent is to search around the building for survivors (i.e., search 4
faces of the building) with the required detection probability while at the same time
optimize the mission objectives and at the end of the mission reach the goal region.
The agent sensing model and in particular the detection probability used for this
experiment is illustrated in Fig. 7(a). The figure shows a hypothetical discretization
of the detection probability into 𝒩 = 3 zones. For instance, the figure illustrates that
the agent achieves a detection probability of 0.95 when it maintains a distance of
[17, 27)m from the object of interest (i.e., green zone) and a detection probability of
0.75 when the distance between the agent and the object of interest is in the range
[27, 53)m (i.e., blue zone). The agent’s detection probability is zero for distances less
than 17m and larger than 93m as shown in the figure. How the detection probability
is discretized into various zones in order to capture the required detection levels is
up to the designer and the mission objectives. For instance in this experiment we
are interested in the first two zones i.e., green and blue zones, for detecting survivors
with relatively high detection probabilities, whereas the red zone can be used for
rapid spot checks and for mission assessment purposes.

Once the various zones have been determined, the agent’s FoV footprint can be
computed for each zone according to Eqn. (3). In particular the agent’s FoV footprint
is 𝑟21 = 202m2, 𝑟22 = 302m2 and 𝑟23 = 602m2 for zones 1,2 and 3 respectively (these
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8 The figure illustrates the generated search plan for: (a)-(d) 𝒬 = 0.9 and (e)-(h) 𝒬 = 0.7
The agent passes through the appropriate zones and visits all the cuboids (and interior cubes) in
its way in order to search each face of the object of interest with the desired detection probability.

quantities have been computed for distances 𝑑1 = 17m, 𝑑2 = 27m and 𝑑3 = 53m
for zones 1,2 and 3 respectively). The generated 3D zones 𝒵1, 𝒵2 and 𝒵3 have
the following properties: a) 𝒵1 has depth 𝐷1 = 10m and detection probability
𝑝𝑑(𝒵1) = 0.95. Moreover, the length of zone 1 is |𝒵1| = 36 i.e., 𝒵1 is composed
of 36 simple cuboids each of which has a size of 𝜎(𝑍1𝑖) = [20, 20, 10]m, b) 𝒵2 has
depth 𝐷2 = 26m, detection probability 𝑝𝑑(𝒵2) = 0.75 and the length |𝒵2| = 16.
Each cuboid of zone 2 has a size of 𝜎(𝑍2𝑖) = [30, 30, 26]m, and finally c) for 𝒵3,
𝐷3 = 40, 𝑝𝑑(𝒵3) = 0.25, |𝒵3| = 4 and each of the 4 simple cuboids of zone 3 has size
of 𝜎(𝑍2𝑖) = [60, 60, 40]m. To aid understanding, the whole concept is depicted in
Fig. 7(a)-(b). Within each simple cuboid we create at its center an interior cube as
shown in Fig. 8.

In essence, the decomposition of the environment around the object of interest
into the aforementioned 3D zones allows us to encode the agent sensing capabilities
and the problem constraints in a form that can be easily incorporated into the
proposed mathematical programming search framework. For instance, when the
search task must be accomplished with a detection probability above 0.9, the agent
will need to visit every one of the cuboids in Zone 1 in order to cover the whole
object in 3D. On the other hand when the purpose is a quick and not so accurate
search, the agent can perform the search task from a larger distance with larger FoV
footprint which can be achieved through zone 2. These scenarios are illustrated in
Fig. 8.

In particular Fig. 8(a)-(d) shows the generated search plan when the object
of interest is required to be searched with a user defined detection probability of
𝒬 = 0.9. As we can observe from Fig. 8(a) (top-down view) in order to satisfy the
required detection probability the agent passes through Zone 1 (i.e., green region).
More specifically, as shown in Fig. 8(b) the agent departs from its initial location
indicated by the green box and visits every cuboid (36 in total) of zone 1 in order to
cover the whole surface of the object of interest. At the end of the mission the agent
finishes inside the goal region indicated by the red box. For this experiment the
mission objective i.e., Eqn. (11) was used with 𝑤1 = 1, 𝑤2 = 1 and horizon time
𝑇 = 90 time-steps. Figure 8(c)-(d) shows in more detail the trajectory of the agent
which was generated in order to accomplish the 3D search task. As shown, the agent
maneuvers in such a way so that every simple cuboid inside Zone 1 is visited, thus
the whole surface of the building is being searched.

Moreover, Fig. 8(e)-(h) shows the agent trajectory when we require a detection
probability value 𝒬 = 0.7. To satisfy this constraint, the agent chooses to pass from
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Fig. 9 The figure illustrates the effect of the weights 𝑤1 and 𝑤2 of Eqn. (11) on the generated
search plan. (a) The generated search plan minimizes the mission execution time. (b) The
generated plan optimizes the UAV energy efficiency by minimizing the deviations between
consecutive control inputs.

Zone 2 (i.e., the blue region). Again, in this experiment we see that the agent visits
all the cuboids of Zone 2 and finishes at the goal region as depicted more clearly
in Fig. 8(f)-(h). Next, we take a closer look at the mission objective and how this
affects the generated search plan.

6.2.2 Mission Objective

In this experiment we investigate how the parameters 𝑤1 and 𝑤2 of the objective
function in Eqn. (11) affect the generated search plan. As we have discussed in
Sec. 5.1, the mission objectives are linked to: a) the mission execution time and
b) the UAV energy efficiency. In order to quantify the above objectives we have
defined the Path Error Penalty (PEP) and the Input Fluctuation Penalty (IFP).
The final mission objective in Eqn. (11) is defined as the weighted combination of
PEP and IFP and thus the parameters 𝑤1 and 𝑤2 determine the emphasis given
to the two objectives. Figure 9 shows a) the generated plan, b) the (𝑥, 𝑦, 𝑧) 3D
coordinates of the agent over the horizon of length 𝑇 = 60 time-steps and c) the
3D control input 𝑢1:𝑇−1 for two configurations of the weights i.e., (𝑤1 = 1, 𝑤2 = 0)
and (𝑤1 = 0, 𝑤2 = 1). In this experiment the object of interest and the 3D zones
are as described in our previous experiment, and the agent passes through Zone 3.
More specifically, Fig. 9(a) shows the generated search plan when only the mission
execution time is considered. In this configuration the agent tries to reach the goal
region as quickly as possible. This is achieved at time 𝜏 = 34 as indicated by the
asterisk in the (𝑥, 𝑦, 𝑧) plot. Also, observe that the control inputs is spiky and not
smooth which indicates rough changes in the control input and thus significant
energy consumption. On the other hand, Fig. 9(b) shows the opposite effect when
the weights are set as (𝑤1 = 0, 𝑤2 = 1). In particular in this scenario, only the IFP
objective is active which minimizes the fluctuations between consecutive control
inputs (and thus the energy consumption) also evident by the smoothness of the
agent trajectory as shown in the figure. Also, observe that in this configuration the
agent reaches the goal region at the end of the horizon at 𝜏 = 𝑇 = 60. To conclude,
depending on the mission requirements the proper weighting scheme can be applied
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Fig. 10 The figure illustrates the various search plans generated by the proposed framework for
searching a single face of an object of interest. As it is shown, depending on the agent starting
position the shape of generated trajectory changes in order to optimize the mission objective
while incorporating the agent dynamics.

in order to emphasize the attention given to the mission execution time and to the
UAV energy efficiency.

Our next experiment illustrated in Fig. 10 aims to investigate more closely
the generated search plan and the behavior of the proposed framework. In this
experiment we are interested in searching a single face of the object of interest
as illustrated in the figure with a planning horizon of length 𝑇 = 35 and weights
(𝑤1 = 0, 𝑤2 = 1). In order to get a better sense of the planning behavior, in this
experiment we are varying the agent starting position i.e., in Fig. 10(a) the agent
home depot is located in front of the object at a distance of 90m and the agent
departs from the ground, whereas in Fig. 10(b) the agent is located directly above
the object of interest at a distance of 85m from the ground. Finally, in Fig. 10(c)
the agent departs from the side of the face to be searched at a distance of 50m. In
each of the 3 experiments we monitor the agent 3D coordinates, velocity and input
controls as shown in Fig. 10. As we can observe from the results shown, depending
on the starting position, the UAV agent changes the way the simple cuboids inside
the green zone are visited to produce the optimal search plan according to the
mission objective and the UAV dynamics. In this experiment we are interested in
minimizing the deviations between the consecutive control inputs as shown by the
graphs in Fig. 10, which is achieved by incorporating the UAV dynamics into the
planning process. This behavior would be more difficult to be achieved if we have
decoupled the joint problem into two parts i.e., kinematic path planning and then
adaptation to the UAV dynamics.

6.2.3 Search planning in the presence of obstacles

Finally, the last experiment aims to investigate the behavior of the proposed search
planning framework in the presence of obstacles. In this experiment we have set
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(a) (b)

Fig. 11 The figure illustrates the generated search plans in the presence of 3D obstacles.

(𝑤1 = 1, 𝑤2 = 1), mission planning horizon 𝑇 = 60 time-steps and the specifications
of the object and 3D zones are as previously. Figure 11(a)-(b) shows two scenarios
where the agent needs to avoid the obstacle, search the object of interest and finish
the mission inside the goal region. In the first scenario depicted in Fig. 11(a) the
agent departs from its home depot (i.e., the green box), flies towards the object of
interest, searches it in 3D and then proceeds to the goal region by flying above the
obstacle. In Figure 11(b) the agent starts within the obstacle and goes around it in
order to find and search the object of interest before moving inside the goal region.
In this scenario we have restricted the maximum height that the agent can fly to
60m. Because the height of the obstacle is also 60m the agent has no longer the
option to fly over the obstacle, thus in this scenario it goes around it as is illustrated
in the figure.

Finally, we should mention that the computational complexity of the proposed
search planning framework is mainly due to the 3D search task shown in Alg. 1. In
particular, the main factor that drives the computational complexity is the number
of binary variables which are required in mathematical program that implements the
3D search task. As the number of binary variables increases the produced search tree
that is needed to be explored during the branch-and-bound/branch-and-cut [11, 26]
optimization process increases in size and as a result more nodes are needed to be
explored until the optimal solution is found. More specifically, the number of binary
variables required in the 3D search task are equal to ℬ = 𝑧𝑡𝑙𝑐𝑖 + 𝑧𝑡𝑐𝑖 + 𝑧𝑖, ∀ 𝑡, 𝑙, 𝑐, 𝑖.
Subsequently, the worst case scenario in terms of computational complexity is
determined by the largest zone (i.e., the zone which contains the largest number of
cuboids). In this case the total number of binary variables is equal to ℬ̃ = 𝑇 |𝒵|(𝐿+1)
where 𝑇 is the planning horizon, |𝒵| is zone length i.e., the number of cuboids
contained inside zone 𝒵 and 𝐿 is the number of faces per cuboid.

Although, the mixed integer quadratic (and linear) programs can be in general
intractable for large problems [18], recent advances in parallel branch-and-bound
techniques [2, 27, 42] allow moderate sizes of such problems to be solved exactly.
Alternatively, adequate solutions can be obtained even for larger problems through
various approximations and heuristics [22, 30]. For instance a sub-optimal solution
can be obtained by solving the problem in a rolling horizon fashion [55] with reduced
computational complexity. Another approach is to decompose the problem into
small sub-problems and process each sub-problem sequentially or with multiple
agents as depicted in Fig. 12. With the help of multiple agents, the planning horizon
and number of cuboids that need to be visited by each agent is reduced and so are
the number of binary variables required for implementing the search task.

In this section we have conducted a thorough synthetic evaluation analysis
of the proposed approach, demonstrating its effectiveness for different parameter
configurations. Specifically, in Sec. 6.2.1 we have demonstrated the behavior of the
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Fig. 12 The figure illustrates the decomposition of the search planning problem into smaller
sub-problems. Specifically, in this scenario 2 UAV agents are used to search 2 objects of interest
(each agent is assigned to a different object). (a) The search planning conducted by 1 agent, (b)
the search planning conducted by 2 agents, (c) the planning time for each scenario.

system for different detection probability values, in Sec. 6.2.2 we have shown the
effect of the weights 𝑤1 and 𝑤2 on the mission’s execution time and on the trajectory
of the UAV and finally, in Sec. 6.2.3 we have shown the behavior of the system in
the presence of obstacles, and we have discussed its computational complexity.

Overall, the proposed framework aims to augment the traditional SAR missions
with precise and efficient automated search capabilities and with improved organiza-
tion and planning, by automating the trajectory planning process and guidance
of an autonomous UAV agent. Manually, operating a UAV in SAR missions is
an error-prone process and requires a high degree of human expertise. Moreover,
optimally guiding the UAV agent by manual control is very challenging. Precise
navigation and time-efficient searching can save lives during SAR missions which is
the main motivation for this work. The proposed framework can be used alongside
the SAR mission, to optimally plan search operations in areas which are inaccessible
to the rescue crew and in scenarios where the infrastructure is destroyed or disrupted.

Future work, will investigate the real-world implementation of the proposed
system, and its integration into our existing multi-drone tasking platform [47, 48]. In
particular we will investigate how the generated trajectories can be translated into
low-level control inputs which can be executed by the UAV’s on-board controller
[23, 20]. Additionally, we aim to investigate what are the benefits of using the
proposed automated framework in real-world SAR scenarios, and how it compares
to the traditional SAR missions. In particular, we plan to conduct real field tests, in
collaboration with the Cyprus Civil Defense (CCD) [9], in order to gain key insights
on the real-world performance of the system. Moreover, the experimental testing
of the proposed framework in the field will allow us to assess its applicability in
real-world conditions (e.g., in various environmental conditions) and identify its
limitations i.e., modeling inefficiencies and hardware/platform limitations.

7 Conclusion

In this work we have proposed a novel search planning framework which automates
the UAV-based search missions in 3D environments. The proposed framework
generates search plans which allow the UAV agent to search all the faces of an object
of interest with the desired probability of detection while at the same time avoiding
collisions with the obstacles in the environment. To enable the 3D search task we
decompose the environment around the object of interest into simple cuboids and
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we form 3D zones which are then encoded into constraints using mathematical
programming techniques. Finally, the 3D search constraints along with the low-level
mission constrains such as the UAV dynamical and sensing model and the mission
objectives are combined to form a mixed integer program which is then solved
exactly using off-the-shelf MIQP solvers.
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