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Outline

" J
m Hypothesis Testing
Maximum A Posteriori Probability (MAP) criterion

Bayes criterion
Neyman-Pearson (NP) criterion

m Estimator properties

m Estimation
Maximum A Posteriori Probability (MAP) criterion

Bayes criterion
Maximum Likelihood (ML)



Hypothesis Testing
" J

Problem

m Assume a “system” with

m Take a measurement of the output y corrupted by noise
y=s.+n, i=0,l

m Decide which was the true output of the system

Hypothesis

m Make two hypothesis: H, which corresponds to the event
that s, is the correct output and H; which corresponds to s,

m Define Pr[H,|y] and Pr|H,|y] and decide that the output was
S0
S1



Maximum A Posteriori Probability

(MAP) Criterion
" J
m Assume we know the prior probabilities T, = Pr[H,] and
m, = Pr[H,]

m \We can use Bayes' Theorem

m Therefore, the decision rule

so If Pr[Hy|y]> Pr[H,|y] or j>
s, if Pr[Hy|y]> Pr[H,|y]

m Define Decisions D, and D; we can write



Likelihood Ratio
"
f(y| Hym,= f(y| H ),

D,

m Rearrange terms to get

m Define the Likelihood Ratio

S H)
f(vH,)

L(y)

m [he MAP criterion



Example

" A
m Assume s, = —a and s; = a.
m A priori probabilities my = 0.2 and r; = 0.8
m Zero-mean Gaussian white noise

Solution



Example



Example

:._
L IfTI:O =711 = 05,

H If Ty = 02, m = 08,




Types of Errors

: S0 | D | D

; _
s G

Prf Jf(ylH)dy

Pils,, D] = | £(y | H,)dy

Prls,,D,]= | f(y | H,)dy

Pris,. D)1= | f(y|H,)dy



Gaussian Integrals




Gaussian Integrals
" J
Y—u

m Let Y~N(u, 0?) and define the random variable Z = s
Then Z~N(0,1).

Prfs,,D,1= [ f(y| H,)dy oo

Pris,. D)1= | f(y|H,)dy




Bayes Criterion
" J

m Some errors may be more important than others!
m Assume we know the cost associated with every decision

m Assume we know the prior probabilities T, = Pr[H,] and
m, = Pr[H,]

m \We can define the Bayes’ risk (or cost)



Bayes Criterion

" A
m After some computations, we arrive at the criterion that we
decide D, if

m Or

m Therefore the Bayes Decision is given by



Example

" J
m Assume s, = —a and s; = a.
m A priori probabilities my = 0.2 and r; = 0.8
m Costs: Cpp=Ci;=0and Cy; =1,Cip =2
m Zero-mean Gaussian white noise



Neyman-Pearson (NP) Criterion
" A

m \What if neither costs nor prior probabilities are known?

m NP Criterion: Keep the False Alarm probability below
some level a;

m and maximize the detection probability

m Constrained optimization problem:

m where we can obtain



Detection vs Estimation

" J
m Detection theory involves the selection among
a finite number of possible hypotheses

m Estimation theory involves the selection among
a continuum of “hypotheses”

As the number of hypotheses in detection theory

grows larger, the distinction between detection and
estimation becomes blurred.



Estimator Properties
" J

m Suppose that we want to estimate the value of a parameter
a using the observations y;, ..., y,, using an estimator &,,
which is a function of the observations. Then, it may be
desirable that the estimator (which is a random variable)
may have the following properties

m Unbiased
m Consistent

m Invariant under transformation. Let the function g(a), then



Estimator Properties
" J

m Sufficient: Intuitively, this property states that the estimator
utilizes all available information.

@ Minimum Variance:

The smaller the variance, the better the quality of the estimator.
Cramer-Rao lower bound

where F(a) is the Fisher Information
2

F(o)=—-E

> lnf(ylaaynaa)
(04



Estimator Properties
" J

m Efficient estimators, let two unbiased estimators @, and &

with @, being the one with the lowest variance. Then
efficiency is defined as

m Asymptotically Efficient

m Asymptotically Normal
@, approaches a normal distribution as n goes to infinity



Maximum A Posteriori (MAP)
Estimation

" A
m We want to estimate the value of a parameter «

using the observations vy, ..., y,, and the a priori
distribution f(a).

m MAP Estimator: Maximize the pdf f (a|y) where

Y = Y1) ees Yul-
m Using Bayes' rule

m [hus



Example

" A
m Assume that

the observations y,, ..., y,, are i.i.d. taken from a
Gaussian distribution with an unknown mean u and
known variance 0%, y;~N(u,0%),i =1, ...,n.

The mean u is also a random variable u~N(m4, £?)

m MAP Estimator:



Example

m Set the derivative equalto 0
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Example
" J

m Estimator properties
If u is held constant, then

But the expected value of the sample mean E|[y|u] = u

Therefore the estimator is biased, but asymptotically
unbiased



Bayes’ Estimator
" J

m \We want to estimate the value of a parameter a using
the observations y = [y, ..., y,]
the a priori distribution f(a).

the Bayes’ cost (loss) which is a function of the error
a, =a—a
m Bayes’ Estimator:

m Various cost functions

-

0 ifla |<A/2
1 if]a,[>A/2

.



Bayes’ Estimator

" J
m Mean Square Error (MSE)

C@ a) =a?=(a—@Q)*

(e o]

E[C(o?,oc)] = _[(05—0?)2 f(a|y)da

—00

m Differentiate with respect to &



Bayes’ Estimator
" J

(e o]

Q= |af(a|y)da=E[aly]

—00

m Using Bayes’ Rule

fyle)fe)  flyle)f(e)
J¥) | oyl fleyde

m \Which results to

faly)=



Example

m Assume that

the observations y,, ..., y,, are i.i.d. taken from a
Gaussian distribution with an unknown mean u and
known variance o2, y;~N(u,04),i =1, ...,n.

The mean u is also a random variable u~N (my, 5?)
m MSE Estimator:_

Qe = | ufuly)ydu=E[uly]

r(yim)=—— B exp(—zf,z i(yl.—u)z)

i=l1

with

(271'62



Example

=
m Using Bayes' rule again we obtain

_ 1 (u—7'o)’
fuly) 2Wexp( 2 ]

Where

SO




Maximum Likelihood (ML) Estimator
"

m \We want to estimate the value of a parameter a using

the observations y = [y, ..., ¥,,]

NO a priori distribution f(a) and NO cost function are
available.

m ML Estimator: Maximize the likelihood distribution

m Assuming independent observations each with pmf f(y;|a)



Relation between ML and MAP

Estimator
"

m Again use Bayes' rule and taking logarithms

In f(a]y)=Inf(y|o)+In f(x)—In f(y)

m For the minimization, take derivatives with respect to a



Example

.
m Assume that

the observations y,, ..., y,, are i.i.d. taken from a
Gaussian distribution with an unknown mean u and
known variance o%, y;~N(u,0%),i =1, ...,n.

The mean u is also a random variable u~N (m, f?)
m ML Estimator:

e e e

i=l1

Set the derivative with respect to u equal to 0.



