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n Motivation
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Motivation - Monitoring of Critical 
Infrastructures 

n Intelligent Transportation Systems
¨ Traffic monitoring
¨ Autonomous vehicles   

n Power Systems  
n Water networks 
n Telecommunication networks 
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Reservoir
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Flow direction
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Modeling 

n Model
¨ It is a set of equations or a piece of software 

(simulator) that imitates the behavior of the real 
system.

¨ There may be several models that can capture the 
behavior of a system.

n Modeling is mostly an art and not an exact 
science.
¨ Depending on the answers we are looking for, models 

can be very detailed and complex or they can be very 
simple.



Modeling Process

n A model predicts what the system’s output would be 
given an input u(t).

n A model is as good as its input: garbage in, garbage out!

SYSTEM

INPUT OUTPUT

INPUT OUTPUT

MODELu(t) y=g (u)



Concept of State

n Suppose that at a time instant t1, u(t1)=a and y(t1)=Y.  
Then, at time t2, u(t2)=a then what is y(t2)=?.

n Example: Let

x(t)=x(t-1)+u(t)
y(u(t))=u(t)+x(t)+5

n The state of a system at time t0 is the information 
required at t0 such that the output y(t), for all t≥t0, is 
uniquely determined from this information and from the 
input u(t), t≥t0.

INPUT OUTPUT

MODELu(t) y(t) =g(u(t), t)



State Space Modeling

n State equations: The set of equations required to 
specify the state x(t) for all t≥t0 given x(t0) and the 
function u(t).

n State Space X: The set of all possible values that 
the state can take. 

n Examples:
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System Classification
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Deterministic and Stochastic Systems

n In many occasions the input functions u(t) are not known 
exactly but we can only characterize them through some 
probability distribution.
¨ Signal noise at a mobile receiver
¨ Arrival time of customers at a bank
¨ …

n If the input function is not known exactly, then the state 
cannot be determined exactly, but it constitutes a random 
variable

n A system is stochastic if at least one of its output 
variables is a random variable.  Otherwise the system is 
deterministic.

n In general, the state of a stochastic system defines a 
random process.



Parameter vs State Estimation 

n Parameter estimation refers to the estimation of 
the value of a constant parameter of our model 
(e.g. the resistance of a resistor) 

n State estimation refers to estimating the state of 
a variables the changes over time.   



Parameter estimation example

n The true value of a resistor’s resistance is not known 
exactly.  Thus we measure it with two multimeters.  The 
obtained measurements are
¨ 𝑦1 = 𝑥 + 𝑣1,   and
¨ 𝑦2 = 𝑥 + 𝑣2

Where 𝑥 is the resistance we are looking for and 𝑣1and 𝑣2
are the noise uncertainty of the instrument (assumed 
additive).  Both are assumed Gaussian with 0 mean and 
variance 𝜎): and 𝜎:: respectively.

Question: what is your best estimate for the value of 𝑥?



Parameter estimation example

n If 𝑦) = 25 and 𝜎) = 10, then J𝑥=
n If 𝑦: = 20 and 𝜎: = 5, then
n Can we do better?
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Parameter estimation example

n Average: J𝑥 = KL(KM
:

= 22.5

n What would be the variance in this case?

𝜎: =
𝜎): + 𝜎::

4
=
100 + 25

4
= 31.25 ⟹ 𝜎 = 31.25 = 5.6
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Parameter estimation example

n Weighted Average: J𝑥 = 𝑤)𝑦) + 𝑤:𝑦:
n How can we find the weights 𝑤) and 𝑤:?
n We would like to have 𝐸 J𝑥 − 𝑥 = 0

𝐸 J𝑥 − 𝑥 = 𝐸 𝑤)𝑦) + 𝑤:𝑦: − 𝑥 =
= 𝐸 𝑤)(𝑥 + 𝑣)) + 𝑤:(𝑥 + 𝑣:) − 𝑥 = 0

⟹ 𝑤)𝑥 + 𝑤:𝑥 − 𝑥 = 0 ⟹ 𝑤) = 1 − 𝑤:

n So, lets assume 𝑤) = 𝑤 and 𝑤: = 1 − 𝑤
n We need to find 𝑤 that minimizes the estimator variance

𝐽 = 𝐸 J𝑥 − 𝑥 : = 𝐸 𝑤𝑦) + (1 − 𝑤) 𝑦:−𝑥 :



Parameter estimation example

n So, what is 𝑤?
𝐽 = 𝐸 J𝑥 − 𝑥 : = 𝐸 𝑤𝑦) + (1 − 𝑤) 𝑦:−𝑥 :

= 𝐸 𝑤(𝑥 + 𝑣)) + (1 − 𝑤) (𝑥 + 𝑣:) − 𝑥 :

= 𝐸 𝑤𝑣) + (1 − 𝑤) 𝑣: :

= 𝑤:𝜎): + (1 − 𝑤): 𝜎::

n What 𝑤 minimizes 𝐽?  
YZ
Y1

= 2𝑤𝜎): − 2(1 − 𝑤) 𝜎:: = 0

n Therefore  

𝑤) = 𝑤 =
𝜎::

𝜎): + 𝜎::
𝑤: = 1 − 𝑤 =

𝜎):

𝜎): + 𝜎::



Parameter estimation example

n Weights
𝑤) = 𝑤 =

𝜎::

𝜎): + 𝜎::
=

25
125

= 0.2 𝑤: = 1 − 𝑤 = 0.8

n Weighted Average: J𝑥 = 0.2𝑦) + 0.8𝑦: = 21
n With variance 𝜎: = 0.2:𝜎): + 0.8:𝜎:: = 20, so 𝜎 = 20 = 4.5

x
0 5 10 15 20 25 30 35 40 45 50

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09


