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Motivation - Monitoring of Critical
Infrastructures
" A
m Intelligent Transportation Systems
Traffic monitoring

Autonomous vehicles
m Power Systems
m \Vater networks
m [elecommunication networks
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Power Networks
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Modeling

" A
m Model

It is a set of equations or a piece of software
(simulator) that imitates the behavior of the real

system.
There may be several models that can capture the
behavior of a system.

m Modeling is mostly an art and not an exact

sclence.

Depending on the answers we are looking for, models
can be very detailed and complex or they can be very

simple.



Modeling Process
" S

INPUT OUTPUT

INPUT OUTPUT
—_ —

u(t) —>| MODEL ; y=g (u)
é é

m A model predicts what the system’s output would be
given an input u(?).

m A model is as good as its input: garbage in, garbage out!



Concept of State
" S

INPUT OUTPUT
— —
u(t) —>| MODEL _’; (1) =g(u(?), f)
E >

m Suppose that at a time instant 7, u(z,)=a and y(¢,)=Y.
Then, at time 1,, u(¢,)=a then what is y(z,)=".

m Example: Let
x(£)=x(t-1)+u(?)

Y(u(®)=u()+x()+5

m [he state of a system at time ¢, is the information
required at ¢, such that the output y(7), for all £>¢,, is
uniquely determined from this information and from the
input u(z), 1,



State Space Modeling
"

m State equations: The set of equations required to
specify the state x(¢) for all ¢, given x(¢,) and the
function wu(z).

m State Space X: The set of all possible values that
the state can take.

m Examples:

x() = f(x(0),u(?),t) Xeor = F (X s X oy gy Uy, K )
y(t) = g(x(t),u(t),t) VY, = g(xk,...,xo,uk,...,uo,k)

x(t,) = x,



System Classification
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Deterministic and Stochastic Systems
" S

®m In many occasions the input functions u(7) are not known

exactly but we can only characterize them through some
probability distribution.

Signal noise at a mobile receiver
Arrival time of customers at a bank

m If the input function is not known exactly, then the state
cannot be determined exactly, but it constitutes a random
variable

m A system is stochastic if at least one of its output

variables is a random variable. Otherwise the system is
deterministic.

m In general, the state of a stochastic system defines a
random process.



Parameter vs State Estimation

" A
m Parameter estimation refers to the estimation of

the value of a constant parameter of our model
(e.g. the resistance of a resistor)

m State estimation refers to estimating the state of
a variables the changes over time.



Parameter estimation example
" A

m [he true value of a resistor’s resistance is not known

exactly. Thus we measure it with two multimeters. The
obtained measurements are

y; = x + vy and

Y, =X+ U,
Where x is the resistance we are looking for and v,and v,
are the noise uncertainty of the instrument (assumed
additive). Both are assumed Gaussian with 0 mean and
variance g{ and o4 respectively.

Question: what is your best estimate for the value of x?



Parameter estimation example
" J
s Ify; =25 and o; = 10, then = Y1 = 25

m Ify, =20 and o, = 5, then maybe x=y, = 20
m Can we do better?




Parameter estimation example
" S

m Average: % = ylzyz = 22.5

m \What would be the variance in this case?

2 2
o2 =O-1 T 03 :100+25=3125 — 0 =V31.25=5.6
4 4




Parameter estimation example

" A
m Weighted Average: X = wyy; + w,y,

m How can we find the weights w; and w,?
m \We would like to have E[x —x] = 0

E[X —x] = E[wiy; + wpy, —x] =
= E[wy(x + v1) + wo(x + 1) —x] = 0

$W1x+W2x—X=O :lel_WZ

m S0, letsassumew; =wandw, =1—-w
m \We need to find w that minimizes the estimator variance

] =E[(X —x)?] = E[(wy; + (1 = w) y,—x)*]



Parameter estimation example

m So, whatis w?

J =E[(® —x)?] = E[(wy; + (1 —w) 3’2_95)2]
=E[(wx+v)+ 1A —-w)(x+v,)—x)?%]

= E[(wv; + (1 —w) v,)?]

=w?0{ + (1 —w)? 67

m What w minimizes J?

aj

dw

m [herefore

o3

— =2wo{ —2(1—-w) s =0

2 2
o{ + 0,

w, =1—w =

of

2 2
o; + o,




Parameter estimation example

" J
m Weights

o2 25
of + 05 T 125
m Weighted Average: ¥ = 0.2y, + 0.8y, = 21
m With variance g2 = 0.2%¢2 + 0.8%02 = 20, 50 0 = V20 = 4.5

0.2 w,=1-—w =08




