Generalized Semi-Markov Processes (GSMP)

Summary

- Some Definitions
- The Poisson Process
- Properties of the Poisson Process
 - Interarrival times
 - Memoryless property and the residual lifetime paradox
 - □ Superposition of Poisson processes
- Markov and Semi-Markov Processes

Probability Space and Random Variables

Probability Space: (Ω, F, P)

- $\Box \Omega$: Sample space: All possible outcomes of a random experiment
- \Box F: Event space: A collection of subsets of Ω for which the following properties should hold.
 - If an event $A \in F$, then the complement of $A, A^c \in F$
 - If two or more events are in *F*, then their union should also be in *F*.
- \square *P*: **Probability:** A mapping from the event space to a real number [0,1] which describes the likelihood that the event will occur.
- **Random Variable** $X(\omega)$
 - \Box A mapping from Ω to the set of real numbers

Example random experiment: toss a coin
 Ω: {H, T}, F: {∅,H,T, Ω}, P: P[H], P[T]
 X(T)= 0, X(H)= 1

Random Process

- Let (Ω, F, P) be a probability space. A stochastic (or random) process $\{X(t)\}$ is a collection of random variables defined on (Ω, F, P) , indexed by $t \in T$ (where *t* is usually time). X(t) is the state of the process.
- Continuous Time and Discrete Time stochastic processes
 - □ If the set *T* is finite or countable then $\{X(t)\}$ is called *discrete-time process*. In this case $t \in \{0, 1, 2, ...\}$ and we may referred to a stochastic sequence. We may also use the notation $\{X_k\}$, *k*=0,1,2,...
 - □ Otherwise, the process is called *continuous-time* process
- Continuous State and Discrete State stochastic processes
 - □ If $\{X(t)\}$ is defined over a countable set, then the process is discretestate, also referred to as chain.
 - □ Otherwise, the process is continuous-state.

Classification of Random Processes

• Joint cdf of the random variables $X(t_0), \dots, X(t_n)$ $F_X(x_0, \dots, x_n; t_0, \dots, t_n) = \Pr \left\{ X(t_0) \le x_0, \dots, X(t_n) \le x_n \right\}$

Independent Process

 \Box Let $X_1, ..., X_n$ be a sequence of independent random variables, then

$$F_{X}(x_{0},...,x_{n};t_{0},...,t_{n}) = F_{X_{0}}(x_{0};t_{0}) \times ... \times F_{X_{n}}(x_{n};t_{n})$$

Stationary Process (strict sense stationarity)
 □ The sequence {X_n} is stationary if and only if for any τ ∈ R

$$F_{X}(x_{0},...,x_{n};t_{0}+\tau,...,t_{n}+\tau)=F_{X}(x_{0},...,x_{n};t_{0},...,t_{n})$$

Classification of Random Processes

Wide-sense Stationarity

□ Let *C* be a constant and $g(\tau)$ a function of τ but not of *t*, then a process is wide-sense stationary if and only if

$$\mathbf{E}\left\{X(t)\right\} = C \quad \text{and} \quad \mathbf{E}\left\{X(t) \cdot X(t+\tau)\right\} = g(\tau)$$

Markov Process

The future of a process does not depend on its past, only on its present

$$\Pr \left\{ X(t_{k+1}) \le x_{k+1} \mid X(t_k) = x_k, ..., X(t_0) = x_0 \right\}$$

=
$$\Pr \left\{ X(t_{k+1}) \le x_{k+1} \mid X(t_k) = x_k \right\}$$

Also referred to as the Markov property

Renewal Process

A renewal process is a chain $\{N(t)\}$ with state space $\{0,1,2,\ldots\}$ whose purpose is to count state transitions. The time intervals between state transitions are assumed iid from an arbitrary distribution. Therefore, for any $0 \le t_1 \le \ldots \le t_k \le \ldots$

 $N(0) = 0 \le N(t_1) \le N(t_2) \le ... \le N(t_k) \le ...$

The Poisson Counting Process

Assumptions:

- At most one event can occur at any time instant (no two or more events can occur at the same time)
- A process with stationary independent increments

$$\Pr\{N(t_{k-1},t_k) = n\} = \Pr\{N(t_k - t_{k-1}) = n\}$$

 Given that a process satisfies the above assumptions, find

$$P_n(t) \equiv \Pr\{N(t) = n\}, n = 0, 1, 2, \dots$$

The Poisson Process

- Step 1: Determine $P_0(t) \equiv \Pr\{N(t) = 0\}$ • Starting from $\Pr\{N(t+s) = 0\} = \Pr\{N(t) = 0 \text{ and } N(t,t+s) = 0\}$ Stationary independent increments $\Rightarrow P_0(t+s) = P_0(t) P_0(s)$
 - Lemma: Let g(t) be a differentiable function for all t≥0 such that g(0)=1 and g(t) ≤ 1 for all t >0. Then for any t, s≥0

$$g(t+s) = g(t)g(s) \Leftrightarrow g(t) = e^{-\lambda t}$$
 for some $\lambda > 0$

The Poisson Process

 $P_0(t) \equiv \Pr\{N(t) = 0\} = e^{-\lambda t}$ Therefore • Step 2: Determine $P_0(\Delta t)$ for a small Δt . $\Pr\left\{N(\Delta t)=0\right\} = e^{-\lambda\Delta t} = 1 - \lambda\Delta t + \frac{\left(\lambda\Delta t\right)^2}{2!} - \frac{\left(\lambda\Delta t\right)^3}{3!} + \dots$ $= 1 - \lambda \Delta t + o(\Delta t).$ **Step 3**: Determine $P_n(\Delta t)$ for a small Δt . ■ For *n*=2,3,... since by assumption no two events can occur at the same time $P_n(\Delta t) \equiv \Pr\{N(\Delta t) = n\} = o(\Delta t)$ • As a result, for n=1 $P_1(\Delta t) \equiv \Pr\{N(\Delta t) = 1\} = \lambda \Delta t + o(\Delta t)$

The Poisson Process

• Step 4: Determine
$$P_n(t+\Delta t)$$
 for any n
 $P_n(t+\Delta t) \equiv \Pr\{N(t+\Delta t) = n\} = \sum_{k=0}^{n} P_{n-k}(t) P_k(\Delta t)$
 $= P_n(t) P_0(\Delta t) + P_{n-1}(t) P_1(\Delta t) + o(\Delta t).$
 $= [1 - \lambda \Delta t + o(\Delta t)] P_n(t) + [\lambda \Delta t + o(\Delta t)] P_{n-1}(t) + o(\Delta t).$
• Moving terms between sides,
 $\frac{P_n(t+\Delta t) - P_n(t)}{\Delta t} = -\lambda P_n(t) + \lambda P_{n-1}(t) + \frac{o(\Delta t)}{\Delta t}.$

u = u = 0

$$\frac{dP_n(t)}{dt} = -\lambda P_n(t) + \lambda P_{n-1}(t)$$

The Poisson Process

Step 5: Solve the differential equation to obtain

$$P_n(t) \equiv \Pr\{N(t) = n\} = \frac{(\lambda t)^n}{n!} e^{-\lambda t}, \quad t \ge 0, \quad n = 0, 1, 2, \dots$$

This expression is known as the Poisson distribution and it full characterizes the stochastic process {N(t)} in [0,t) under the assumptions that

 $\hfill\square$ No two events can occur at exactly the same time, and

- Independent stationary increments
- You should verify that

$$E[N(t)] = \lambda t$$
 and $var[N(t)] = \lambda t$

Parameter λ has the interpretation of the "rate" that events arrive.

Properties of the Poisson Process: Interevent Times

Let t_{k-1} be the time when the k-1 event has occurred and let V_k denote the (random variable) interevent time between the kth and k-1 events.

• What is the cdf of
$$V_k$$
, $G_k(t)$?
 $G_k(t) = \Pr\{V_k \le t\} = 1 - \Pr\{V_k > t\}$
 $= 1 - \Pr\{0 \text{ arrivals in the interval } [t_{k-1}, t_{k-1} + t)\}$
 $= 1 - \Pr\{N(t) = 0\}$ Stationary independent
 $= 1 - e^{-\lambda t}$
 $\Rightarrow G(t) = 1 - e^{-\lambda t}$
Exponential Distribution
 $V_k \rightarrow V_k$

Properties of the Poisson Process: Exponential Interevent Times

The process {V_k} k=1,2,..., that corresponds to the interevent times of a Poisson process is an iid stochastic sequence with cdf

$$G(t) = \Pr\{V_k \le t\} = 1 - e^{-\lambda t}$$

• The corresponding pdf is $g(t) = \lambda e^{-\lambda t}, \quad t \ge 0$

Therefore, the Poisson is also a **renewal** process

One can easily show that

 $E[V_k] = \frac{1}{\lambda}$ and $var[V_k] = \frac{1}{\lambda^2}$

Properties of the Poisson Process: Memoryless Property

Let t_k be the time when the previous event has occurred and let V denote the time until the next event.

Assuming that we have been at the current state for *z* time units, let *Y* be the remaining time until the next event.

• What is the cdf of *Y*?

$$F_{Y}(t) = \Pr\{Y \le t\} = \Pr\{V - z < t \mid V > z\} \xrightarrow{t_{k}} \underbrace{t_{k} + z}_{Y = V - z} = \frac{\Pr\{V > z \text{ and } V < z + t\}}{\Pr\{V > z\}} = \frac{\Pr\{z < V < z + t\}}{1 - \Pr\{V < z\}}$$
$$= \frac{G(t + z) - G(z)}{1 - G(z)} = \frac{1 - e^{-\lambda(t + z)} - 1 + e^{-\lambda z}}{1 - 1 + e^{-\lambda z}}$$

$$\Rightarrow F_Y(t) = 1 - e^{-\lambda t} = G(t)$$

Memoryless! It does not matter that we have already spent z time units at the current state.

- Consider a DES with *m* events each modeled as a Poisson Process with rate λ_i, *i*=1,...,*m*. What is the resulting process?
- Suppose at time t_k we observe event 1. Let Y_1 be the time until the next event 1. Its cdf is $G_1(t)=1-\exp\{-\lambda_1t\}$.
- Let Y₂,..., Y_m denote the residual time until the next occurrence of the corresponding event.
- Their cdfs are:

Memoryless Property

$$G_{i}(t) = 1 - e^{-\lambda_{i}}$$

e_j e_1 $V_1 = Y_1$ \downarrow t_k $Y_j = V_j - z_j$

- Let Y^* be the time until the next event (any type). $Y^* = \min \{Y_i\}$
- Therefore, we need to find

$$G_{Y^*}(t) = \Pr\left\{Y^* \le t\right\}$$

Superposition of Poisson Processes

$$\begin{split} G_{Y^*}(t) &= \Pr\left\{Y^* \leq t\right\} = \Pr\left\{\min\left\{Y_i\right\} \leq t\right\} \\ &= 1 - \Pr\left\{\min\left\{Y_i\right\} > t\right\} \\ &= 1 - \Pr\left\{Y_1 > t, \dots, Y_m > t\right\} \\ &= 1 - \prod_{i=1}^m \Pr\left\{Y_i > t\right\} = 1 - \prod_{i=1}^m e^{-\lambda_i t} \\ &\implies G_{Y^*}(t) = 1 - e^{-\Lambda t} \quad \text{where} \quad \Lambda = \sum_{i=1}^m \lambda_i \end{split}$$

 The superposition of *m* Poisson processes is also a Poisson process with rate equal to the sum of the rates of the individual processes

Superposition of Poisson Processes

Suppose that at time t_k an event has occurred. What is the probability that the next event to occur is event j?

Without loss of generality, let j=1 and define

$$Y' = \min\{Y_i: i=2,...,m\}. ~~ -1 - \exp\{-\sum_{i=2}^m \lambda_i t\} = 1 - \exp\{-\Lambda' t\}$$

Pr {next event is
$$j = 1$$
} = Pr { $Y_1 \le Y'$ } =

$$= \int_{0}^{\infty} \int_{0}^{y'} \lambda_1 e^{-\lambda_1 y_1} \Lambda' e^{-\Lambda' y'} dy_1 dy'$$

$$= \int_{0}^{\infty} \Lambda' (1 - e^{-\lambda_1 y_1}) e^{-\Lambda' y'} dy'$$

$$= \frac{\lambda_1}{\Lambda} \quad \text{where} \quad \Lambda = \sum_{i=1}^{m} \lambda_i$$

Residual Lifetime Paradox

 Suppose that buses pass by the bus station according to a Poisson process with rate λ. A passenger arrives at the bus station at some random point.

- How long does the passenger has to wait?
- Solution 1:
 - \Box E[*V*]= 1/ λ . Therefore, since the passenger will (on average) arrive in the middle of the interval, he has to wait for E[*Y*]=E[*V*]/2= 1/(2 λ).
 - □ But using the memoryless property, the time until the next bus is exponentially distributed with rate λ , therefore $E[Y]=1/\lambda$ not $1/(2\lambda)!$
- Solution 2:
 - □ Using the memoryless property, the time until the next bus is exponentially distributed with rate λ , therefore $E[Y]=1/\lambda$.
 - □ But note that $E[Z] = 1/\lambda$ therefore $E[V] = E[Z] + E[Y] = 2/\lambda$ not $1/\lambda!$

Markov and Semi-Markov Property

- The Markov Property requires that the process has no memory of the past. This memoryless property has two aspects:
 - All past state information is irrelevant in determining the future (no state memory).
 - How long the process has been in the current state is also irrelevant (no state age memory).
 - The later implies that the lifetimes between subsequent events (interevent time) should also have the memoryless property (i.e., exponentially distributed).
- Semi-Markov Processes
 - For this class of processes the requirement that the state age is irrelevant is relaxed, therefore, the interevent time is no longer required to be exponentially distributed.

Example

Consider the process

 $\boldsymbol{X}_{\boldsymbol{k}+1} = \boldsymbol{X}_{\boldsymbol{k}} - \boldsymbol{X}_{\boldsymbol{k}-1}$

with $\Pr{X_0=0} = \Pr{X_0=1} = 0.5$ and $\Pr{X_1=0} = \Pr{X_1=1} = 0.5$

- Is this a Markov process? NO
- Is it possible to make the process Markov?
- Define $Y_k = X_{k-1}$ and form the vector $Z_k = [X_k, Y_k]^T$ then we can write

$$Z_{k+1} = \begin{bmatrix} X_{k+1} \\ Y_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} X_k \\ Y_k \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} Z_k$$

Generalized Semi-Markov Processes (GSMP)

A GSMP is a stochastic process {*X*(*t*)} with state space *X* generated by a stochastic timed automaton

$$(X, E, \Gamma, f, p_0, G)$$

- X is the countable state space
- E is the countable event set
- $\Gamma(x)$ is the feasible event set at state *x*.
- f(x, e): is state transition function.
- p_0 is the probability mass function of the initial state
- *G* is a vector with the cdfs of all events.
- The semi-Markov property of GSMP is due to the fact that at the state transition instant, the next state is determined by the current state and the event that just occurred.