Homework 2

1. The number of messages successfully reaching a receiver at time $k = 0, 1, 2, \cdots$ is denoted by S_k , and it is modelled as na iid sequence with a distribution specified by $S_k = n$ with probability 1/N, where $n = 1, 2, \cdots, N$ for some given integer N. The cumulative number of successfully received messages is described by the random sequence

$$X_{k+1} = X_k + S_k, \qquad X_0 = 0$$

- (a) Does $\{X_k\}$ possess the Markov property?
- (b) Calculate the mean $m_k = \mathbb{E}[X_k]$ and variance $\sigma_k^2 = \mathbb{E}[(X_k m_k)^2]$ of this random sequence.
- 2. Consider a simple queueing system where customers arrive according to a Poisson process of rate λ . Assume that service times are exponentially distributed with rate μ . Let X denote the number of customers that arrive during a service time. Determine $\Pr\{X = k\}, k = 0, 1, 2...$

Note: The following integral may be of help but it is not necessarily needed to obtain the result

$$\int_0^\infty x^{k-1} e^{-x} dx = \Gamma(k), \quad k = 1, 2, ..$$

where the gamma function $\Gamma(k)$ satisfies $\Gamma(k+1) = k!$

3. Given a Poisson process, suppose that exactly n events are observed in the interval (0, t). Consider a sequence of time instants such that $0 < s_1 < t_1 < s_2 < t_2 < \cdots < s_n < t_n < t$. Let $\tau_i = t_i - s_i$, $i = 1, \cdots, n$. Show that the probability that exactly one event occurs in each of the intervals $(s_i, t_i]$, $i = 1, \cdots, n$, given that exactly n events have occurred in (0, t) is

$$n! \prod_{i=1}^{n} \frac{\tau_i}{t}$$

4. Given the Poisson distribution

$$\Pr\{X(t) = n\} = \frac{(\lambda t)^n e^{-\lambda t}}{n!}, \quad t \ge 0, n = 0, 1, 2, \cdots$$

set t = 1 to obtain the probability distribution that characterizes the random variable X

$$\Pr\{X = n\} = \frac{\lambda^n e^{-\lambda}}{n!}, \quad n = 0, 1, 2, \cdots$$

Show that the discrete random variable

$$Y = \sum_{i=1}^{N} X_i,$$

where every X_i , $i = 1, \dots, N$ has the above Poisson distribution with parameter λ and all X_i are mutually independent, also has a Poisson distribution with parameter $N\lambda$.

5. (*) Suppose that $\{X_i\}$ is a sequence of iid random variables according to the exponential distribution with rate λ . Let $Y_n = \sum_{i=1}^n X_i$. Find the distribution of Y_n .

(*) Optional