Homework 2 Solution

1. (a) Clearly, X}, possesses the Markov property since X1 depends only on the current state X}, and
not on any part of previous information.

(b) Since Sy =n,n=1,---, N with equal probability,
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2. Let us denote the service time by S, i.e., S is an exponential random variable with density fg(t) =
e Ht. Therefore, we can write that

Pr{X =n} = E[Pr{X =n|S =t}
= /OO Pr{X = n|S = t}pe dt (1)
0

From the Poisson distribution we know that

Pr{X =n|S=t}= </\7? e

Substituting in (1) we get
Pr{X =n} = / %ue_o"“‘)tdt
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Let 7 = (A + p)t, therefore dr = (A + p)dt. Using this substitution we get
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3. Let A denote the event that there is one event in each of the intervals (s;,t;), ¢ = 1,--- ,n and denote
the number of events in the interval (0,¢) by N(¢). What we are after is Pr{A|N(¢) = n}. Using the
definition of conditional probability

Pr{A,N(t) =n}
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Since, this is a Poisson process,

Pr{N(t) = n} — (A;?ne*t
Next define N(t1,t2) = N(t2) — N(t1), i.e., it is the numl.)er of events in the interval (t1,t2), to > t1.
Therefore,
Pr{A,N(t)=n} = Pr{N(s;)=0,N(s1,t1)=1,-- ,N(ti—1,8;) =0, N(s5,t;) =1, ,
N(tn-1,8n) =0,N(sp,tn) = 1}.
Next, using the stationary independent increments assumption of the Poisson process, we get
Pr{A,N(t)=n} = Pr{N(s;) =0}Pr{N(s1,t1) =1}---Pr{N(ti—1,s;) =0} Pr{N(s;,t;) =1}---
Pr{N(tn—_1,sn) = 0} Pr{N(sp,t,) = 1}.
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Pr{N (s, — tn—1) = 0} Pr{N(t,, — s,,) = 1}.
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Substituting this in (2) we get
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. Assume that {X;(¢)},7=1,---, N is a sequence of mutually independent Poisson processes. From the

class notes, we know that the superposition of N Poisson processes is also a Poisson process with rate
NA. Recall that we showed that the event interarrival times of the resulting process is exponentially
distributed with rate N\ and note that exponential interarrival times imply a Poisson process. Thus
Y'(t) is a Poisson process with rate N A, therefore

N
(NX)"

Fix, t = 1 to obtain,
(NA)"
Pr{Y =n} = ¢ N

. The moment generating function of the random variable Y;, is given by
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Since Y;, = Y., X; where X; and iid
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where the last equality is due to the independence of X;s. The moment generating function of X;s is
easily evaluated

Mx((v) = E[e”x]zfoooe“fx(x)dx
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Therefore, the moment generating function of Y;, is given by

M) = (12)

Note that the Laplace transform of the pdf of ¥;, is obtained by simply substituting s = —v (where s
in a complex number). Therefore,
)\ n
M = .
w0 = (135)

From any Laplace transform table one can obtain the distribution of Y,, as the inverse of the above
transform
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P = =€ m—1p° ° =
This corresponds to the well known Erlang distribution of order n. Note that for n = 1 we get the
exponential distribution.



