
Markov Chains 

Summary  

!  Markov Chains 
!  Discrete Time Markov Chains  

" Homogeneous and non-homogeneous Markov 
chains 

" Transient and steady state Markov chains 

!  Continuous Time Markov Chains  
" Homogeneous and non-homogeneous Markov 

chains 
" Transient and steady state Markov chains 



Markov Processes 

!  Recall the definition of a Markov Process 
"  The future a process does not depend on its past, only on its 

present 

!  Since we are dealing with “chains”, X(t) can take discrete 
values from a finite or a countable infinite set. 

!  For a discrete-time Markov chain, the notation is also 
simplified to   

!  Where Xk is the value of the state at the kth step 

Chapman-Kolmogorov Equations 

!  Define the one-step transition probabilities 

!  Clearly, for all i, k, and all feasible transitions from state i 
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k u k+n 

!  Define the n-step transition probabilities 



Chapman-Kolmogorov Equations 

xi 

x1 

xR 
…

 xj 

k u k+n 
!  Using total probability 

!  Using the memoryless property of Marckov chains 

!  Therefore, we obtain the Chapman-Kolmogorov Equation 

Matrix Form  

!  Define the matrix  

!  We can re-write the Chapman-Kolmogorov Equation 

!  Choose, u = k+n-1, then 

One step transition 
probability 

Forward Chapman-
Kolmogorov 



Matrix Form  

!  Choose, u = k+1, then 

One step transition 
probability 

Backward Chapman-
Kolmogorov 

Homogeneous Markov Chains  

!  The one-step transition probabilities are independent of 
time k. 

!  Even though the one step transition is independent of k, 
this does not mean that the joint probability of Xk+1 and Xk 
is also independent of k 
"  Note that 



Example 

!  Consider a two transmitter (Tx) communication system 
where, time is divided into time slots and that operates 
as follows 
"  At most one packet can arrive during any time slot and this can 

happen with probability !. 
"  Packets are transmitted by whichever transmitter is available, 

and if both are available then the packet is given to Tx 1. 
"  If both transmitters are busy, then the packet is lost 
"  When a Tx is busy, it can complete the transmission with 

probability " during any one time slot. 
"  If a packet is submitted during a slot when both transmitters are 

busy but at least one Tx completes a packet transmission, then 
the packet is accepted (departures occur before arrivals). 

!  Describe the Markov Chain that describe this model. 

Example: Markov Chain 

!  For the State Transition Diagram of the Markov Chain, each 
transition is simply marked with the transition probability  
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Example: Markov Chain 

!  Suppose that ! = 0.5 and " = 0.7, then,  
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State Holding Times 

!  Suppose that at point k, the Markov Chain has 
transitioned into state Xk=i.  An interesting question is 
how long it will stay at state i.   

!  Let V(i) be the random variable that represents the 
number of time slots that Xk=i. 

!  We are interested in the quantity Pr{V(i) = n} 



State Holding Times 

!  This is the Geometric Distribution with parameter pii. 
!  V(i) has the memoryless property 

State Probabilities 

!  An interesting quantity we are usually interested in is the 
probability of finding the chain at various states, i.e., we 
define 

!  For all possible states, we define the vector 

!  Using total probability we can write 

!  In vector form, one can write 
Or, if homogeneous 
Markov Chain 



State Probabilities Example 

!  Suppose that  

!  Find !(k) for k=1,2,… 

with 

!  Transient behavior of the system:  MCTransient.m 
!  In general, the transient behavior is obtained by solving 

the difference equation 

Classification of States 

!  Definitions 
" State j is reachable from state i if the probability to go 

from i to j in n >0 steps is greater than zero (State j is 
reachable from state i if in the state transition diagram 
there is a path from i to j). 

" A subset S of the state space X is closed if pij=0 for 
every i∈S and j ! S 

" A state i is said to be absorbing if it is a single 
element closed set. 

" A closed set S of states is irreducible if any state j∈S 
is reachable from every state i∈S. 

" A Markov chain is said to be irreducible if the state 
space X is irreducible. 



Example 

!  Irreducible Markov Chain  
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!  Reducible Markov Chain  
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Transient and Recurrent States 

!  Hitting Time 
!  Recurrence Time Tii is the first time that the MC returns to 

state i. 
!  Let #i be the probability that the state will return back to i 

given it starts from i.  Then,  

!  The event that the MC will return to state i given it started 
from i is equivalent to Tii < !, therefore we can write 

!  A state is recurrent if #i=1 and transient if #i<1  



Theorems 

!  If a Markov Chain has finite state space, then at least one 
of the states is recurrent. 

!  If state i is recurrent and state j is reachable from state i 
then, state j is also recurrent. 

!  If S is a finite closed irreducible set of states, then every 
state in S is recurrent. 

Positive and Null Recurrent States  

!  Let Mi be the mean recurrence time of state i 

!  A state is said to be positive recurrent if Mi<!.  If Mi=! 
then the state is said to be null-recurrent. 

!  Theorems 
"  If state i is positive recurrent and state j is reachable 

from state i then, state j is also positive recurrent. 
"  If S is a closed irreducible set of states, then every 

state in S is positive recurrent or, every state in S is 
null recurrent, or, every state in S is transient. 

"  If S is a finite closed irreducible set of states, then 
every state in S is positive recurrent. 



Example 
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Periodic and Aperiodic States 

!  Suppose that the structure of the Markov Chain is such 
that state i is visited after a number of steps that is an 
integer multiple of an integer d >1.  Then the state is 
called periodic with period d. 

!  If no such integer exists (i.e., d =1) then the state is called 
aperiodic. 

!  Example 
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Steady State Analysis 

!  Recall that the probability of finding the MC at state i after 
the kth step is given by 

!  An interesting question is what happens in the “long run”, 
i.e.,  

!  Questions: 
" Do these limits exists? 
"  If they exist, do they converge to a legitimate 

probability distribution, i.e.,  
" How do we evaluate $j, for all j. 

!  This is referred to as steady state or equilibrium or 
stationary state probability 

Steady State Analysis 

!  Recall the recursive probability 

!  If steady state exists, then !(k+1) = !(k), and therefore 
the steady state probabilities are given by the solution to 
the equations 

!  For Irreducible Markov Chains the presence of periodic 
states prevents the existence of a steady state probability 

!  Example: periodic.m 

and 



Steady State Analysis 

!  THEOREM: If an irreducible aperiodic Markov chain 
consists of positive recurrent states, a unique stationary 
state probability vector ! exists such that $j > 0 and 

where Mj is the mean recurrence time of state j 

!  The steady state vector ! is determined by solving  

and 

!  Ergodic Markov chain.   

Birth-Death Example 
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!  Thus, to find the steady state vector ! we need to solve 

and 



Birth-Death Example 

!  In other words 

!  Solving these equations we get 

!  In general  

!  Summing all terms we get  

Birth-Death Example 

!  Therefore, for all states j we get 

!  If p<1/2, then  

All states are transient 

!  If p>1/2, then  

All states are positive recurrent 



Birth-Death Example 

!  If p=1/2, then  

All states are null recurrent 

Continuous-Time Markov Chains  

!  In this case, transitions can occur at any time 
!  Recall the Markov (memoryless) property 

where t1 < t2 < … < tk 

!  Recall that the Markov property implies that 
" X(tk+1) depends only on X(tk)  (state memory) 
"  It does not matter how long the state is at X(tk) (age 

memory). 
!  The transition probabilities now need to be defined for every 

time instant as pij(t), i.e., the probability that the MC 
transitions from state i to j at time t. 



Transition Function  

!  Define the transition function 

!  The continuous-time analogue of the Chapman-
Kolmokorov equation is  

!  Using the memoryless property  

!  Define H(s,t)=[pij(s,t)], i,j=1,2,… then   

"  Note that H(s, s)= I 

Transition Rate Matrix  

!  Consider the Chapman-Kolmogorov for s " t " t+%t 

!  Subtracting H(s,t) from both sides and dividing by %t  

!  Taking the limit as %t#0  

where the transition rate matrix Q(t) is given by 



Homogeneous Case  

!  In the homogeneous case, the transition functions do not 
depend on s and t, but only on the difference t-s thus  

!  It follows that   

and the transition rate matrix 

!  Thus    

State Holding Time  

!  The time the MC will spend at each state is a random 
variable with distribution   

where 

!  Explain why…    



Transition Rate Matrix Q.  

!  Recall that    

!  First consider the qij, i & j, thus the above equation can be 
written as    

!  Evaluating this at t = 0, we get that 
pij(0)= 0 for all i & j 

!  The event that will take the state from i to j has exponential 
residual lifetime with rate 'ij, therefore, given that in the 
interval (t,t+() one event has occurred, the probability that 
this transition will occur is given by Gij(()=1-exp{-'ij(}. 

Transition Rate Matrix Q.  

!  Since Gij(()=1-exp{-'ij(}. 

!  In other words qij is the rate of the Poisson process that 
activates the event that makes the transition from i to j. 

!  Next, consider the qjj, thus    

!  Evaluating this at t = 0, we get that Probability that chain 
leaves state  j 



Transition Rate Matrix Q.  

!  Note that for each row i, the sum  

!  The event that the MC will transition out of state i has 
exponential residual lifetime with rate )(i), therefore, the 
probability that an event will occur in the interval (t,t+() 
given by Gi(()=1-exp{- )(i)(}. 

Transition Probabilities P.  

!  Recall that in the case of the superposition of two or more 
Poisson processes, the probability that the next event is 
from process j is given by 'j/). 

!  Suppose that state transitions occur at random points in 
time T1 < T2 <…< Tk <… 

!  Let Xk be the state after the transition at Tk 
!  Define  

!  In this case, we have 

and 



Example  

!  Assume a transmitter where packets arrive according to a 
Poisson process with rate !. 

!  Each packet is processed using a First In First Out (FIFO) 
policy.   

!  The transmission time of each packet is exponential with 
rate µ.  

!  The transmitter has buffer to store up to two packets that 
wait to be transmitted. 

!  Packets that find the buffer full are lost. 
!  Draw the state transition diagram. 
!  Find the Rate Transition Matrix Q. 
!  Find the State Transition Matrix P 

Example  

!  The rate transition matrix is given by 
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!  The state transition 
matrix is given by 



State Probabilities and Transient 
Analysis  

!  Similar to the discrete-time case, we define 

!  In vector form 

!  With initial probabilities 

!  Using our previous notation (for homogeneous MC) 

Obtaining a general 
solution is not easy! 

!  Differentiating with respect to t gives us more “inside”  

“Probability Fluid” view  

!  We view $j(t) as the level of a “probability fluid” that is 
stored at each node j (0=empty, 1=full).  

Change in the 
probability fluid 

inflow outflow 

r i 

j 

qij 

…
 

qjr …
 

Inflow Outflow 



Steady State Analysis  

!  Often we are interested in the “long-run” probabilistic 
behavior of the Markov chain, i.e.,  

!  As with the discrete-time case, we need to address the 
following questions 
" Under what conditions do the limits exist? 
"  If they exist, do they form legitimate probabilities? 
" How can we evaluate these limits? 

!  These are referred to as steady state probabilities or 
equilibrium state probabilities or stationary state probabilities 

Steady State Analysis  

!  Theorem: In an irreducible continuous-time Markov Chain 
consisting of positive recurrent states, a unique stationary 
state probability vector ! with  

!  These vectors are independent of the initial state 
probability and can be obtained by solving  

0 Change inflow 

outflow r i 

j 

qij 

…
 

qjr …
 

Inflow Outflow 

!  Using the “probability fluid” 
view 



Example  

!  For the previous example, with the above transition 
function, what are the steady state probabilities 
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!  Solve 

Example  

!  The solution is obtained 



Birth-Death Chain  

!  Find the steady state probabilities 
!  Similarly to the previous example,  

#0 

0 1 i 
#1 #i-1 #i 

µ1 
µi µi+1 

!  And we solve  
and  

Example  

!  The solution is obtained 

!  In general 

!  Making the sum equal to 1 
Solution exists if 



Uniformization of Markov Chains  

!  In general, discrete-time models are easier to work with, 
and computers (that are needed to solve such models) 
operate in discrete-time 

!  Thus, we need a way to turn continuous-time to discrete-
time Markov Chains 

!  Uniformization Procedure  
" Recall that the total rate out of state i is –qii=)(i).  Pick 

a uniform rate * such that * " )(i) for all states i. 
" The difference * - )(i) implies a “fictitious” event that 

returns the MC back to state i (self loop). 

Uniformization of Markov Chains  

!  Uniformization Procedure  
"  Let PU

ij be the transition probability from state i to state j for the 
discrete-time uniformized Markov Chain, then 
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