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Markov Processes
"

m Recall the definition of a Markov Process

The future a process does not depend on its past, only on its
present

PrdX (1, )< %0 | X (1) =%, X (1) =x, }

= Pr{X(tkH)S X+l |X(tk):xk}

m Since we are dealing with “chains”, X(¢) can take discrete
values from a finite or a countable infinite set.

m For a discrete-time Markov chain, the notation is also
simplified to

PriX, =X | Xy =X Xo =X p=Pr{X,, =x,, | X, =x,}

m Where X, is the value of the state at the kth step

Chapman-Kolmogorov Equations
" S

m Define the one-step transition probabilities
pij (k):Pr{XkH :j‘Xk :l}
m Clearly, for all i, k, and all feasible transitions from state i

Y p, (k=1

JeT ()
m Define the n-step transition probabilities
P (k,k+n)= Pr{Xk+n =jl X, = i}




Chapman-Kolmogorov Equations

m Using total probability k u k+n
R

p, (kk+n)=YPr{X,, =/l X, =rX, =i}Pr{X, =r|X, =i}
r=I1

m Using the memoryless property of Marckov chains
Pri{X,,, =jlX,=rX, =i}=Pr{X,,, =/j|X, =r}

m Therefore, we obtain the Chapman-Kolmogorov Equation

R
p, (k,k+n)=> p, (ku)p, (uk+n), k<u<k+n
r=1

Matrix Form
" JE—

m Define the matrix
H(k,k+n)=| p; (k,k+n)]
m We can re-write the Chapman-Kolmogorov Equation
H(k,k+n)=H(k,u)H(u,k+n)
m Choose, u = k+n-1, then
H(k,k+n)=H(k,k+n-1)H(k+n-1,k+n)
=H(k,k+n-1)P(k+n-1)

AN

Forward Chapman- One step transition
Kolmogorov probability




Matrix Form
" JE
m Choose, u = k+1, then

H(k,k+n)=H(k,k+1)H(k+1k+n)
=P()H(k+1,k+n)

Backward Chapman- One step transition
Kolmogorov probability

Homogeneous Markov Chains

m The one-step transition probabilities are independent of
time £.

P(kh)=P or  [p;|=[Pr{X,, =jlX, =i}]

m Even though the one step transition is independent of %,
this does not mean that the joint probability of X,,, and X,
is also independent of &

Note that

Pri{X,, =/.X, =i}=Pr{X,, =/ | X, =i}Pr{X, =i}
=p, Pr{X, =i}



Example
" JAEE

m Consider a two transmitter (Tx) communication system
where, time is divided into time slots and that operates
as follows

At most one packet can arrive during any time slot and this can
happen with probability «.

Packets are transmitted by whichever transmitter is available,
and if both are available then the packet is given to Tx 1.

If both transmitters are busy, then the packet is lost

When a Tx is busy, it can complete the transmission with
probability g during any one time slot.

If a packet is submitted during a slot when both transmitters are
busy but at least one Tx completes a packet transmission, then
the packet is accepted (departures occur before arrivals).

m Describe the Markov Chain that describe this model.

Example: Markov Chain

m For the State Transition Diagram of the Markov Chain, each
transition is simply marked with the transition probability
11

Doo =(l-a) Py = Py =
Po=B-a) p11=(1—ﬁ)(1—a)+0€ﬁ p12=06(1—,3)

=B l—q) Pu=Ba+2B(1-B)1-a)
pn=01-B) +208(1-pB)



Example: Markov Chain
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m Suppose that a =0.5 and £=10.7, then,

0.5 05 0
P=[p,|=|035 05 0.5
0.245 0455 03

State Holding Times

" JE
m Suppose that at point k£, the Markov Chain has
transitioned into state X,=i. An interesting question is
how long it will stay at state i.

m Let V(i) be the random variable that represents the
number of time slots that X, =i.

m We are interested in the quantity Pr{V(i) = n}
PrdV(i)=n}=Pr{X,,, #i,X,,,, =i, X, =i| X, =i}
=Pr{X,,, #i| X,,,, =i,... X, =i}X

+n-1

Pr{Xk+n 1= e Xy =X :i}
:Pr{Xk ¢l| k+n-1 —i}X

Pr{Xk+n 1= I | Xk+n—2“"Xk - l}x
Pr{Xk+n 2 Tl Xy =1 X :i}



State Holding Times

" JE
Pr{V(j)zn}=Pr{Xk+n #i[ Xy, :i}X
PI‘{ k+n—1 _i|Xk+n—2""Xk :i}X
Pr{Xk+n 2 = "Xk+1 :l|Xk :l}
=(1- pl.l.)Pr{XkM_l =i| X,.,, =i}x
Pr{Xk _l|Xk+n 3 =1 X, :i}
Pr{Xk+n 3 = b Xy = 11X :i}
PI‘{V(i):n}: (l_pii)pg_

m This is the Geometric Distribution with parameter p,,.
m /(i) has the memoryless property

State Probabilities

" JE
m An interesting quantity we are usually interested in is the
probability of finding the chain at various states, i.e., we

define _
7, (k)=Pr{X, =i}
m For all possible states, we define the vector

n(k) =7, (k)7 (k)]

m Using total probability we can write
(k)= Y Pr{X, =il X, =j}Pr{X, =/}
J

=27, (07, (k-1)

J
m |n vector form, one can write

m(k)=m(k—1)P (k) DnINOMOENOUS 7t (f) =7 (k —1)P



State Probabilities Example

" JE
m Suppose that
0.5 0.5 0
P={035 05 0.15 wih — m(0)=[1 0 0]

0.245 0455 03
m Find =(k) for i=1,2,...
05 05 0
n(1)=[1 0 0][035 0.5 0.15{=[0.5 0.5 0]

0.245 0455 0.3

m Transient behavior of the system: MCTransient.m

m |n general, the transient behavior is obtained by solving
the difference equation

n(k)=n(k-1)P

Classification of States
"

“m Definitions
State j is reachable from state i if the probability to go
from itoj in n >0 steps is greater than zero (State j is
reachable from state i if in the state transition diagram
there is a path from i to j).

A subset S of the state space X is closed if p,=0 for
everyi€Sandj¢ S

A state i is said to be absorbing if it is a single
element closed set.

A closed set S of states is irreducible if any state j€S§
is reachable from every state i €S.

A Markov chain is said to be irreducible if the state
space X is irreducible.



Example

m Irreducible Markov Chain
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m @, @
D 1o @)

m Reducible Markov Chain

Do
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Absorbing \

State

Closed irreducible set

Transient and Recurrent States

"
m Hitting Time 7, =min{k >0: X, =i,X, = j}

m Recurrence Time T is the first time that the MC returns to
state i.

m Let p. be the probability that the state will return back to i
given it starts from i. Then,

pP; = ZPI{T;I' = k}
k=1

m The event that the MC will return to state i given it started
from i is equivalent to T, < o, therefore we can write

Pi IEPI‘{]; :k}:Pr{T;i < °°}
P

m A state is recurrent if p=1 and transient if p <1



Theorems
" A

m |[f a Markov Chain has finite state space, then at least one
of the states is recurrent.

m |f state i is recurrent and state j is reachable from state i
then, state j is also recurrent.

m |f S'is a finite closed irreducible set of states, then every
state in S is recurrent.

Positive and Null Recurrent States
"

m |et M, be the mean recurrence time of state i
M, = E[Zi]: EkPl‘{];l. :k}
k=1

m A state is said to be positive recurrent if //,<co. If M=o
then the state is said to be null-recurrent.

m [heorems

If state i is positive recurrent and state j is reachable
from state i then, state j is also positive recurrent.

If S'is a closed irreducible set of states, then every
state in S is positive recurrent or, every state in S'is
null recurrent, or, every state in S is transient.

If S'is a finite closed irreducible set of states, then
every state in S is positive recurrent.



Example
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Periodic and Aperiodic States
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m Suppose that the structure of the Markov Chain is such
that state i is visited after a number of steps that is an
integer multiple of an integer d >1. Then the state is
called periodic with period d.

m If no such integer exists (i.e., d =1) then the state is called
aperiodic.

m Example

0‘5/ 1 0O 1 O
P=|05 0 05

Periodic State d =2




Steady State Analysis

B
m Recall that the probability of finding the MC at state i after
the kth step is given by

7, (k)=Pr{X, =i} n(k)=[r, (k). 7 (k)..]
m An interesting question is what happens in the “long run”,
ie., 7, =lim 7, (k)

m This is referred to as steady state or equilibrium or
stationary state probability

m Questions:
Do these limits exists?
If they exist, do they converge to a legitimate
probability distribution, i.e., .7, =1
How do we evaluate =, for all ;.

Steady State Analysis

|
m Recall the recursive probability
n(k+1)=n(k)P
m |f steady state exists, then n(k+1) = =(k), and therefore
the steady state probabilities are given by the solution to
the equations

n=mnP and Zﬂiizl

m For Irreducible Markov Chains the presence of periodic
states prevents the existence of a steady state probability

m Example: periodic.m
O 1 O
P=|05 0 0.5 n(0)=[1 0 0]
0O I O



Steady State Analysis
* JE
m THEOREM: If an irreducible aperiodic Markov chain

consists of positive recurrent states, a unique stationary
state probability vector & exists such that z, > 0 and

1
r.=limnr. (k)=—
J Syeo )
k M,
where M, is the mean recurrence time of state ;

m The steady state vector r is determined by solving
n=mnP and 277:’. =1

m Ergodic Markov chain.

Birth-Death Example

|
1' —____1_-]2‘ __,__1_']?_
e W @
P P P
p 1-p O
0o 1-
p=|” P
0O p 0

m Thus, to find the steady state vector # we need to solve
n=mnP and Zﬂ'i =1



Birth-Death Example

"
m |n other words
Ty, =T,p+mp

n.=n_(1-p)+tm, p,j=12,..
m Solving these equations we get

1- 1—p» }
r =Py i zi_pj i
2 0
P )4

In general 1-pY
"Ing . =(_p]no

m Summing all terms we get

« (1— i “ (1— i
Z(TP] 1$1/2( pp]

Birth-Death Example

|
m Therefore, for all states j we get

()57

m If p<1/2, then

i(l_p]’_ =m; =0, forallj

=\ p All states are transient

m |f p>1/2, then 2p-1(1-p

;
= 1—p) . , forall;s
z P\__ P _, =7 p(p} or all;
-0\ P 2

i= p_l

All states are positive recurrent



Birth-Death Example

" J
m If p=1/2, then
o (l_pji =, =0, forallj

All states are null recurrent

Continuous-Time Markov Chains
" S

m |n this case, transitions can occur at any time

m Recall the Markov (memoryless) property
Pr{X(tkH )= X | X () =%, X (1) = xo}

= Pr{X(t/m ): Xeor | X(tk ): xk}
where ¢, <t, < .. <¢
m Recall that the Markov property implies that
X(t,,,) depends only on X(¢,) (state memory)

It does not matter how long the state is at X(z,) (age
memory).
m The transition probabilities now need to be defined for every
time instant as p,(?), i.e., the probability that the MC
transitions from state i to j at time t.



Transition Function

m Define the transition function

p; (s,0)=Pr{X(1)=j| X (s) =i}, s<t

m The continuous-time analogue of the Chapman-
Kolmokorov equation is

p; (s,1)=

DPr{X()=j X (u)=r,X(s)=i}Pr{X (u)=r| X (s)=i}
m rUsing the memoryless property

py (5.)= D Pr{X ()= j| X () =r}Pr{X (u)=r| X (s)=i}

m Define H(s,))=[p;(s,0)], i,j=1,2,... then
H(s,t)=H(s,u)H(u,t), s<u<t
Note that H(s, s)=1

Transition Rate Matrix
" JE——

m Consider the Chapman-Kolmogorov for s < < t+At
H (s,t+At)=H(s,t ) H(z,t + At)
m Subtracting H(s,r) from both sides and dividing by At
H(s,t+At)—H(s,r) H(s,t)(H(1,t+Ar)-T)
At - At

m Taking the limit as 4120

oH (s,7) B
v H(s,)Q(z)

where the transition rate matrix Q(z) is given by
H(s,1+Ar)-1
At

Q1) = lim



Homogeneous Case
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m |In the homogeneous case, the transition functions do not
depend on s and ¢, but only on the difference ¢-s thus

p; (s,6)=p; (t—s)

m [t follows that
H(s,t)=H(t-s5)=P(7)
and the transition rate matrix

. H(tr+A)-1 . H(An-T1
Q(t)—l}g}) ~ —Bg%) T—Q, constant
m Thus
oP . 1 ifi=j t
(t)zP(t)Q with p, (0) = T = P()=e"
ot 0 ifi#

State Holding Time
* JEE

m The time the MC will spend at each state is a random
variable with distribution

G, (1)=1-e"

where

A=A

Jel ()

m Explain why...



Transition Rate Matrix Q.

" J
m Recall that

= =P(Q= — Zp,., ore

m First consider the g, i #j, thus the above equation can be
written as  dp, (¢)

=p. (g, + .0, (D4,

at r#£i
m Evaluating this at = 0, we get that
dp; (1) _, — |pj0=0foralli#,
ot li=o ’

m The event that will take the state from i to j has exponential
residual lifetime with rate 4, therefore, given that in the
interval (¢,¢+7) one event has occurred, the probability that

this transition will occur is given by G (1)=1-exp{-4,7}.

Transition Rate Matrix Q.

" JE
m Since G (1)=1-exp{-4;7}.

ij

I, ( ]

py ( ) = qij = A e/lij
0T |0

.
m |n other words g, is the rate of the Poisson process that

activates the event that makes the transition from i to ;.
m Next, consider the g, thus

:/’Ll,j

7=0

ap; (1)
él‘ :pij(f)q]j_i'zpir(f)qrj
l"i]
m Evaluating this at =0, we get that Probability that chain
ap (¢) 3 leaves state j

ij _

=4, ©—|l-p,@)| =-q,
of | I atl: ij :It:O Ji




Transition Rate Matrix Q.
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m The event that the MC will transition out of state i has
exponential residual lifetime with rate A(i), therefore, the
probability that an event will occur in the interval (z,t+7)
given by G,(r)=1-exp{- A(i)}.

—q,=A(i)e """ =AW

m Note that for each row i, the sum

2.4, =0

J

Transition Probabilities P.

" JE
m Suppose that state transitions occur at random points in
time 7, <7, <..<T,<...
m Let X, be the state after the transition at 7,
m Define , ,
F, :Pr{Xkﬂ =j| X, :l}

m Recall that in the case of the superposition of two or more
Poisson processes, the probability that the next event is
from process j is given by 4,/4.

m In this case, we have

P, = 9y e and P.=0
—q;



Example
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m Assume a transmitter where packets arrive according to a
Poisson process with rate A.

m Each packet is processed using a First In First Out (FIFO)
policy.

m The transmission time of each packet is exponential with
rate u.

m The transmitter has buffer to store up to two packets that
wait to be transmitted.

Packets that find the buffer full are lost.
Draw the state transition diagram.
Find the Rate Transition Matrix Q.
Find the State Transition Matrix P

Example

m The rate transition matrix is given by
—A A 0 0

po —QA+p) A 0

0 o —(A+p) 4

| 0 0 Lo o—p] [0 (A+u) O
p=—1 _|#

(A+u)| 0 U 0
0

Q=

m The state transition
matrix is given by




State Probabilities and Transient

Analysis

" JEE

m Similar to the discrete-time case, we define
. ()=Pr{X(1)=/}

m In vector form

dn (¢
dt

n(t)=[m (). 7, (¢),..]

With initial probabilities

n(0)=[7,(0).7,(0),...]
m Using our previous notation (for homogeneous MC)

n(1)=n(0)P(r)= m(0)e”

Differentiating with respect to ¢ gives us more “inside”
d?l'j ()

) _

=n(1)Q &

ar !

“Probability Fluid” view
" JE

m We view 7;(¢) as the level of a “probability fluid” that is
stored at each node j (0O=empty, 1=full).

dr, (1)

Change in the
probability fluid

/dt

Inflow

=4q

.
/

i

Obtaining a general
solution is not easy!

jjﬂj(l‘)'l_zqi]ﬂ-i(f)

i£]

(1)+>,q,7.(1)

i#]

\

outflow

\

inflow

A
‘< -q,, = ;qﬂ

Outflow



Steady State Analysis

m Often we are interested in the “long-run” probabilistic
behavior of the Markov chain, i.e.,
7, =limz, (¢)
{—>o0

m These are referred to as steady state probabilities or
equilibrium state probabilities or stationary state probabilities

m As with the discrete-time case, we need to address the
following questions
Under what conditions do the limits exist?
If they exist, do they form legitimate probabilities?
How can we evaluate these limits?

Steady State Analysis

m Theorem: In an irreducible continuous-time Markov Chain
consisting of positive recurrent states, a unique stationary
state probability vector & with

7, =limz, (¢)

m These vectors are independent of the initial state

probability and can be obtained by solving
Q=0 and Zn}. =1

m Using the “probability fluid” ‘

view

J
/ outflow @%]d (tf)z %/7@
i i
O\:q]'jﬂj(t)-l_qu’jﬂ:i(t) ’

0 Change - \ inflow / \

Inflow Outflow




m For the previous example, with the above transition
function, what are the steady state probabilities

m Solve

nQ:[ﬂo T, T, 7T3]

T, +m tmw,+m, =1

Example

B

m The solution is obtained

—Am, +um, =0
Ay —(A+u)m +um, =0

A, —(A+u)m, +um, =0

Ty+m+m,+m,=1=

] 0
uo —(A+p) A 0
0 po —(A+u) 4
0 0 poo -
A
=T, =—T7,
‘u 2
=T, = & T,
i
13
=7, = E T,
1
T, =

0]




Birth-Death Chain

m Find the steady state probabilities
m Similarly to the previous example,

A 2, 0
Q= K, _(}'1 +:u1) 2‘1
9 ;sz _(Az -+ ‘uz)

m And we solve
Q=0 and D> m =1

Example
" JE

m The solution is obtained

A
—A T, + 1,7, =0 >, =—7,
M,
Aoy
Aty — (A + ) )m +pm, =0 =T, =) —— |,
HH,
m |n general
Ay
Aow — () =00 =T, = T,
Myl

m Making the sum equal to 1

R
- (A e (Ad
T, 1+2[ !/ ]]21 S =1+ Uit < oo




Uniformization of Markov Chains
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m |n general, discrete-time models are easier to work with,

and computers (that are needed to solve such models)
operate in discrete-time

m Thus, we need a way to turn continuous-time to discrete-
time Markov Chains

m Uniformization Procedure

Recall that the total rate out of state i is —¢,=4(i). Pick
a uniform rate y such that y = A(i) for all states i.

The difference y - A(i) implies a “fictitious” event that
returns the MC back to state i (self loop).

Uniformization of Markov Chains

m Uniformization Procedure
Let PY; be the transition probability from state i to state j for the
discrete-time uniformized Markov Chain, then

B g

PY =/

' y_zj';tiqij

9




