Markov Chains

Summary

- Markov Chains
- Discrete Time Markov Chains
\square Homogeneous and non-homogeneous Markov chains
\square Transient and steady state Markov chains
- Continuous Time Markov Chains
\square Homogeneous and non-homogeneous Markov chains
\square Transient and steady state Markov chains

Markov Processes

- Recall the definition of a Markov Process

The future a process does not depend on its past, only on its present

$$
\begin{aligned}
& \operatorname{Pr}\left\{X\left(t_{k+1}\right) \leq x_{k+1} \mid X\left(t_{k}\right)=x_{k}, \ldots, X\left(t_{0}\right)=x_{0}\right\} \\
&=\operatorname{Pr}\left\{X\left(t_{k+1}\right) \leq x_{k+1} \mid X\left(t_{k}\right)=x_{k}\right\}
\end{aligned}
$$

- Since we are dealing with "chains", $X(t)$ can take discrete values from a finite or a countable infinite set.
- For a discrete-time Markov chain, the notation is also simplified to

$$
\operatorname{Pr}\left\{X_{k+1}=x_{k+1} \mid X_{k}=x_{k}, \ldots, X_{0}=x_{0}\right\}=\operatorname{Pr}\left\{X_{k+1}=x_{k+1} \mid X_{k}=x_{k}\right\}
$$

- Where X_{k} is the value of the state at the k th step

Chapman-Kolmogorov Equations

- Define the one-step transition probabilities

$$
p_{i j}(k)=\operatorname{Pr}\left\{X_{k+1}=j \mid X_{k}=i\right\}
$$

- Clearly, for all i, k, and all feasible transitions from state i

$$
\sum_{j \in \Gamma(i)} p_{i j}(k)=1
$$

- Define the n-step transition probabilities

Chapman-Kolmogorov Equations

- Using total probability

$$
p_{i j}(k, k+n)=\sum_{r=1}^{R} \operatorname{Pr}\left\{X_{k+n}=j \mid X_{u}=r, X_{k}=i\right\} \operatorname{Pr}\left\{X_{u}=r \mid X_{k}=i\right\}
$$

- Using the memoryless property of Marckov chains

$$
\operatorname{Pr}\left\{X_{k+n}=j \mid X_{u}=r, X_{k}=i\right\}=\operatorname{Pr}\left\{X_{k+n}=j \mid X_{u}=r\right\}
$$

- Therefore, we obtain the Chapman-Kolmogorov Equation

$$
p_{i j}(k, k+n)=\sum_{r=1}^{R} p_{i r}(k, u) p_{r j}(u, k+n), \quad k \leq u \leq k+n
$$

Matrix Form

- Define the matrix

$$
\mathbf{H}(k, k+n)=\left[p_{i j}(k, k+n)\right]
$$

- We can re-write the Chapman-Kolmogorov Equation

$$
\mathbf{H}(k, k+n)=\mathbf{H}(k, u) \mathbf{H}(u, k+n)
$$

- Choose, $u=k+n-1$, then

$$
\begin{aligned}
\mathbf{H}(k, k+n) & =\mathbf{H}(k, k+n-1) \mathbf{H}(k+n-1, k+n) \\
& =\mathbf{H}(k, k+n-1) \mathbf{P}(k+n-1)
\end{aligned}
$$

Matrix Form

- Choose, $u=k+1$, then

Homogeneous Markov Chains

- The one-step transition probabilities are independent of time k.

$$
\mathbf{P}(k)=\mathbf{P} \quad \text { or } \quad\left[p_{i j}\right]=\left[\operatorname{Pr}\left\{X_{k+1}=j \mid X_{k}=i\right\}\right]
$$

- Even though the one step transition is independent of k, this does not mean that the joint probability of X_{k+1} and X_{k} is also independent of k
\square Note that

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{k+1}=j, X_{k}=i\right\} & =\operatorname{Pr}\left\{X_{k+1}=j \mid X_{k}=i\right\} \operatorname{Pr}\left\{X_{k}=i\right\} \\
& =p_{i j} \operatorname{Pr}\left\{X_{k}=i\right\}
\end{aligned}
$$

Example

- Consider a two transmitter (Tx) communication system where, time is divided into time slots and that operates as follows
\square At most one packet can arrive during any time slot and this can happen with probability α.
\square Packets are transmitted by whichever transmitter is available, and if both are available then the packet is given to Tx 1.
\square If both transmitters are busy, then the packet is lost
\square When a Tx is busy, it can complete the transmission with probability β during any one time slot.
\square If a packet is submitted during a slot when both transmitters are busy but at least one Tx completes a packet transmission, then the packet is accepted (departures occur before arrivals).
Describe the Markov Chain that describe this model.

Example: Markov Chain

- For the State Transition Diagram of the Markov Chain, each transition is simply marked with the transition probability

\[

\]

Example: Markov Chain

- Suppose that $\alpha=0.5$ and $\beta=0.7$, then,

$$
\mathbf{P}=\left[p_{i j}\right]=\left[\begin{array}{lll}
0.5 & 0.5 & 0 \\
0.35 & 0.5 & 0.15 \\
0.245 & 0.455 & 0.3
\end{array}\right]
$$

State Holding Times

- Suppose that at point k, the Markov Chain has transitioned into state $X_{k}=i$. An interesting question is how long it will stay at state i.
- Let $V(i)$ be the random variable that represents the number of time slots that $X_{k}=i$.
- We are interested in the quantity $\operatorname{Pr}\{V(i)=n\}$

$$
\begin{gathered}
\operatorname{Pr}\{V(i)=n\}=\operatorname{Pr}\left\{X_{k+n} \neq i, X_{k+n-1}=i, \ldots, X_{k+1}=i \mid X_{k}=i\right\} \\
=\operatorname{Pr}\left\{X_{k+n} \neq i \mid X_{k+n-1}=i, \ldots, X_{k}=i\right\} \times \\
\operatorname{Pr}\left\{X_{k+n-1}=i, \ldots, X_{k+1}=i \mid X_{k}=i\right\} \\
=\operatorname{Pr}\left\{X_{k+n} \neq i \mid X_{k+n-1}=i\right\} \times \\
\operatorname{Pr}\left\{X_{k+n-1}=i \mid X_{k+n-2} \ldots, X_{k}=i\right\} \times \\
\operatorname{Pr}\left\{X_{k+n-2}=i, \ldots, X_{k+1}=i \mid X_{k}=i\right\}
\end{gathered}
$$

State Holding Times

$$
\begin{gathered}
\operatorname{Pr}\{V(i)=n\}=\operatorname{Pr}\left\{X_{k+n} \neq i \mid X_{k+n-1}=i\right\} \times \\
\operatorname{Pr}\left\{X_{k+n-1}=i \mid X_{k+n-2} \cdots, X_{k}=i\right\} \times \\
\operatorname{Pr}\left\{X_{k+n-2}=i, \ldots, X_{k+1}=i \mid X_{k}=i\right\} \\
=\left(1-p_{i i}\right) \operatorname{Pr}\left\{X_{k+n-1}=i \mid X_{k+n-2}=i\right\} \times \\
\operatorname{Pr}\left\{X_{k+n-2}=i \mid X_{k+n-3}=i, \ldots, X_{k}=i\right\} \\
\operatorname{Pr}\left\{X_{k+n-3}=i, \ldots, X_{k+1}=i \mid X_{k}=i\right\} \\
\operatorname{Pr}\{V(i)=n\}=\left(1-p_{i i}\right) p_{i i}^{n-1}
\end{gathered}
$$

- This is the Geometric Distribution with parameter $p_{i i}$.
- $V(i)$ has the memoryless property

State Probabilities

- An interesting quantity we are usually interested in is the probability of finding the chain at various states, i.e., we define

$$
\pi_{i}(k) \equiv \operatorname{Pr}\left\{X_{k}=i\right\}
$$

- For all possible states, we define the vector

$$
\boldsymbol{\pi}(k)=\left[\pi_{0}(k), \pi_{1}(k) \ldots\right]
$$

- Using total probability we can write

$$
\begin{aligned}
\pi_{i}(k) & =\sum_{j} \operatorname{Pr}\left\{X_{k}=i \mid X_{k-1}=j\right\} \operatorname{Pr}\left\{X_{k-1}=j\right\} \\
& =\sum_{j} p_{i j}(k) \pi_{j}(k-1)
\end{aligned}
$$

- In vector form, one can write

$$
\boldsymbol{\pi}(k)=\boldsymbol{\pi}(k-1) \mathbf{P}(k) \quad \begin{aligned}
& \text { Or, if homogeneous } \\
& \text { Markov Chain }
\end{aligned} \boldsymbol{\pi}(k)=\boldsymbol{\pi}(k-1) \mathbf{P}
$$

State Probabilities Example

- Suppose that

$$
\mathbf{P}=\left[\begin{array}{lll}
0.5 & 0.5 & 0 \\
0.35 & 0.5 & 0.15 \\
0.245 & 0.455 & 0.3
\end{array}\right] \quad \text { with } \quad \boldsymbol{\pi}(0)=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
$$

- Find $\boldsymbol{\pi}(k)$ for $k=1,2, \ldots$

$$
\boldsymbol{\pi}(1)=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0.5 & 0.5 & 0 \\
0.35 & 0.5 & 0.15 \\
0.245 & 0.455 & 0.3
\end{array}\right]=\left[\begin{array}{lll}
0.5 & 0.5 & 0
\end{array}\right]
$$

- Transient behavior of the system: MCTransient.m
- In general, the transient behavior is obtained by solving the difference equation

$$
\boldsymbol{\pi}(k)=\boldsymbol{\pi}(k-1) \mathbf{P}
$$

Classification of States

Definitions

State j is reachable from state i if the probability to go from i to j in $n>0$ steps is greater than zero (State j is reachable from state i if in the state transition diagram there is a path from i to j).
A subset S of the state space X is closed if $p_{i j}=0$ for every $i \in S$ and $j \notin S$
\square A state i is said to be absorbing if it is a single element closed set.
A closed set S of states is irreducible if any state $j \in S$ is reachable from every state $i \in S$.
\square A Markov chain is said to be irreducible if the state space X is irreducible.

Example

- Irreducible Markov Chain

- Reducible Markov Chain

Transient and Recurrent States

- Hitting Time $T_{i j}=\min \left\{k>0: X_{0}=i, X_{k}=j\right\}$
- Recurrence Time $T_{i i}$ is the first time that the MC returns to state i.
- Let ρ_{i} be the probability that the state will return back to i given it starts from i. Then,

$$
\rho_{i}=\sum_{k=1}^{\infty} \operatorname{Pr}\left\{T_{i i}=k\right\}
$$

- The event that the MC will return to state i given it started from i is equivalent to $T_{i i}<\infty$, therefore we can write

$$
\rho_{i}=\sum_{k=1}^{\infty} \operatorname{Pr}\left\{T_{i i}=k\right\}=\operatorname{Pr}\left\{T_{i i}<\infty\right\}
$$

- A state is recurrent if $\rho_{i}=1$ and transient if $\rho_{i}<1$

Theorems

- If a Markov Chain has finite state space, then at least one of the states is recurrent.
- If state i is recurrent and state j is reachable from state i then, state j is also recurrent.
- If S is a finite closed irreducible set of states, then every state in S is recurrent.

Positive and Null Recurrent States

- Let M_{i} be the mean recurrence time of state i

$$
M_{i} \equiv E\left[T_{i i}\right]=\sum_{k=1}^{\infty} k \operatorname{Pr}\left\{T_{i i}=k\right\}
$$

- A state is said to be positive recurrent if $M_{i}<\infty$. If $M_{i}=\infty$ then the state is said to be null-recurrent.

- Theorems

\square If state i is positive recurrent and state j is reachable from state i then, state j is also positive recurrent.
\square If S is a closed irreducible set of states, then every state in S is positive recurrent or, every state in S is null recurrent, or, every state in S is transient.
\square If S is a finite closed irreducible set of states, then every state in S is positive recurrent.

Example

Periodic and Aperiodic States

- Suppose that the structure of the Markov Chain is such that state i is visited after a number of steps that is an integer multiple of an integer $d>1$. Then the state is called periodic with period d.
- If no such integer exists (i.e., $d=1$) then the state is called aperiodic.
- Example

Steady State Analysis

- Recall that the probability of finding the MC at state i after the k th step is given by

$$
\pi_{i}(k) \equiv \operatorname{Pr}\left\{X_{k}=i\right\} \quad \pi(k)=\left[\pi_{0}(k), \pi_{1}(k) \ldots\right]
$$

- An interesting question is what happens in the "long run", i.e.,

$$
\pi_{i} \equiv \lim _{k \rightarrow \infty} \pi_{l}(k)
$$

- This is referred to as steady state or equilibrium or stationary state probability
- Questions:
\square Do these limits exists?
\square If they exist, do they converge to a legitimate probability distribution, i.e., $\sum \pi_{i}=1$
\square How do we evaluate π_{j}, for all j.

Steady State Analysis

- Recall the recursive probability

$$
\boldsymbol{\pi}(k+1)=\boldsymbol{\pi}(k) \mathbf{P}
$$

- If steady state exists, then $\boldsymbol{\pi}(k+1)=\boldsymbol{\pi}(k)$, and therefore the steady state probabilities are given by the solution to the equations

$$
\boldsymbol{\pi}=\boldsymbol{\pi} \mathbf{P} \quad \text { and } \quad \sum_{i} \pi_{i}=1
$$

For Irreducible Markov Chains the presence of periodic states prevents the existence of a steady state probability

- Example: periodic.m

$$
\mathbf{P}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0.5 & 0 & 0.5 \\
0 & 1 & 0
\end{array}\right]
$$

$$
\boldsymbol{\pi}(0)=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
$$

Steady State Analysis

- THEOREM: If an irreducible aperiodic Markov chain consists of positive recurrent states, a unique stationary state probability vector π exists such that $\pi_{j}>0$ and

$$
\pi_{j}=\lim _{k \rightarrow \infty} \pi_{j}(k)=\frac{1}{M_{j}}
$$

where M_{j} is the mean recurrence time of state j

- The steady state vector π is determined by solving

$$
\boldsymbol{\pi}=\boldsymbol{\pi} \mathbf{P} \quad \text { and } \quad \sum_{i} \pi_{i}=1
$$

- Ergodic Markov chain.

Birth-Death Example

- Thus, to find the steady state vector π we need to solve

$$
\boldsymbol{\pi}=\boldsymbol{\pi} \mathbf{P} \quad \text { and } \quad \sum_{i} \pi_{i}=1
$$

Birth-Death Example

- In other words

$$
\begin{aligned}
& \pi_{0}=\pi_{0} p+\pi_{1} p \\
& \pi_{j}=\pi_{j-1}(1-p)+\pi_{j+1} p, j=1,2, \ldots
\end{aligned}
$$

- Solving these equations we get

$$
\pi_{1}=\frac{1-p}{p} \pi_{0} \quad \pi_{2}=\left(\frac{1-p}{p}\right)^{2} \pi_{0}
$$

$$
\pi_{j}=\left(\frac{1-p}{p}\right)^{j} \pi_{0}
$$

- Summing all terms we get

$$
\pi_{0} \sum_{i=0}^{\infty}\left(\frac{1-p}{p}\right)^{i}=1 \Rightarrow \pi_{0}=1 / \sum_{i=0}^{\infty}\left(\frac{1-p}{p}\right)^{i}
$$

Birth-Death Example

- Therefore, for all states j we get

$$
\pi_{j}=\left(\frac{1-p}{p}\right)^{j} / \sum_{i=0}^{\infty}\left(\frac{1-p}{p}\right)^{i}
$$

- If $p<1 / 2$, then

$$
\sum_{i=0}^{\infty}\left(\frac{1-p}{p}\right)^{i}=\infty \quad \begin{array}{ll}
& \Rightarrow \pi_{j}=0, \text { for all } j \\
\text { All states are transient }
\end{array}
$$

$$
\begin{aligned}
& \text { ■ If } p>1 / 2 \text {, then } \\
& \sum_{i=0}^{\infty}\left(\frac{1-p}{p}\right)^{i}=\frac{p}{2 p-1}>0 \quad \Rightarrow \pi_{j}=\frac{2 p-1}{p}\left(\frac{1-p}{p}\right)^{j}, \text { for all } j
\end{aligned}
$$

Birth-Death Example

- If $p=1 / 2$, then

$$
\sum_{i=0}^{\infty}\left(\frac{1-p}{p}\right)^{i}=\infty \quad \begin{array}{ll}
& \Rightarrow \pi_{j}=0, \text { for all } j \\
\text { All states are null recurrent }
\end{array}
$$

Continuous-Time Markov Chains

- In this case, transitions can occur at any time
- Recall the Markov (memoryless) property

$$
\begin{aligned}
& \operatorname{Pr}\left\{X\left(t_{k+1}\right)=x_{k+1} \mid X\left(t_{k}\right)=x_{k}, \ldots, X\left(t_{0}\right)=x_{0}\right\} \\
& = \\
& =\operatorname{Pr}\left\{X\left(t_{k+1}\right)=x_{k+1} \mid X\left(t_{k}\right)=x_{k}\right\}
\end{aligned}
$$

where $t_{1}<t_{2}<\ldots<t_{k}$

- Recall that the Markov property implies that
$\square X\left(t_{k+1}\right)$ depends only on $X\left(t_{k}\right)$ (state memory)
\square It does not matter how long the state is at $X\left(t_{k}\right)$ (age memory).
- The transition probabilities now need to be defined for every time instant as $p_{i j}(t)$, i.e., the probability that the MC transitions from state i to j at time t .

Transition Function

Define the transition function

$$
p_{i j}(s, t) \equiv \operatorname{Pr}\{X(t)=j \mid X(s)=i\}, \quad s \leq t
$$

- The continuous-time analogue of the ChapmanKolmokorov equation is
$p_{i j}(s, t) \equiv$
$\sum \operatorname{Pr}\{X(t)=j \mid X(u)=r, X(s)=i\} \operatorname{Pr}\{X(u)=r \mid X(s)=i\}$
- Using the memoryless property

$$
p_{i j}(s, t) \equiv \sum_{r} \operatorname{Pr}\{X(t)=j \mid X(u)=r\} \operatorname{Pr}\{X(u)=r \mid X(s)=i\}
$$

- Define $\mathbf{H}(s, t)=\left[p_{i j}(s, t)\right], i, j=1,2, \ldots$ then

$$
\mathbf{H}(s, t)=\mathbf{H}(s, u) \mathbf{H}(u, t), \quad s \leq u \leq t
$$

\square Note that $\mathbf{H}(s, s)=\mathbf{I}$

Transition Rate Matrix

- Consider the Chapman-Kolmogorov for $s \leq t \leq t+\Delta t$

$$
\mathbf{H}(s, t+\Delta t)=\mathbf{H}(s, t) \mathbf{H}(t, t+\Delta t)
$$

- Subtracting $\mathbf{H}(s, t)$ from both sides and dividing by Δt

$$
\frac{\mathbf{H}(s, t+\Delta t)-\mathbf{H}(s, t)}{\Delta t}=\frac{\mathbf{H}(s, t)(\mathbf{H}(t, t+\Delta t)-\mathbf{I})}{\Delta t}
$$

- Taking the limit as $\Delta t \rightarrow 0$

$$
\frac{\partial \mathbf{H}(s, t)}{\partial t}=\mathbf{H}(s, t) \mathbf{Q}(t)
$$

where the transition rate matrix $\mathbf{Q}(t)$ is given by

$$
\mathbf{Q}(t)=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{H}(t, t+\Delta t)-\mathbf{I}}{\Delta t}
$$

Homogeneous Case

- In the homogeneous case, the transition functions do not depend on s and t, but only on the difference t-s thus

$$
p_{i j}(s, t)=p_{i j}(t-s)
$$

- It follows that

$$
\mathbf{H}(s, t)=\mathbf{H}(t-s) \equiv \mathbf{P}(\tau)
$$

and the transition rate matrix

$$
\mathbf{Q}(t)=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{H}(t, t+\Delta t)-\mathbf{I}}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{H}(\Delta t)-\mathbf{I}}{\Delta t}=\mathbf{Q}, \quad \text { constant }
$$

- Thus

$$
\frac{\partial \mathbf{P}(t)}{\partial t}=\mathbf{P}(t) \mathbf{Q} \text { with } p_{i j}(0)=\left\{\begin{array}{ll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array} \quad \Rightarrow \mathbf{P}(t)=e^{\mathbf{Q} t}\right.
$$

State Holding Time

- The time the MC will spend at each state is a random variable with distribution

$$
G_{i}(t)=1-e^{-\Lambda_{i}}
$$

where

$$
\Lambda_{i}=\sum_{j \in \Gamma(i)} \lambda_{j}
$$

- Explain why...

Transition Rate Matrix \mathbf{Q}.

Recall that

$$
\frac{\partial \mathbf{P}(t)}{\partial t}=\mathbf{P}(t) \mathbf{Q} \Rightarrow \frac{\partial p_{i j}(t)}{\partial t}=\sum_{r} p_{i r}(t) q_{r j}
$$

- First consider the $q_{i j}, i \neq j$, thus the above equation can be written as

$$
\frac{\partial p_{i j}(t)}{\partial t}=p_{i i}(t) q_{i j}+\sum_{r \neq i} p_{i r}(t) q_{r j}
$$

- Evaluating this at $t=0$, we get that

$$
\left.\frac{\partial p_{i j}(t)}{\partial t}\right|_{t=0}=q_{i j} \quad p_{i j}(0)=0 \text { for all } i \neq j
$$

- The event that will take the state from i to j has exponential residual lifetime with rate $\lambda_{i j}$, therefore, given that in the interval $(t, t+\tau)$ one event has occurred, the probability that this transition will occur is given by $G_{i j}(\tau)=1-\exp \left\{-\lambda_{i j} \tau\right\}$.

Transition Rate Matrix \mathbf{Q}.

- Since $G_{i j}(\tau)=1-\exp \left\{-\lambda_{i j} \tau\right\}$.

$$
\left.\frac{\partial p_{i j}(\tau)}{\partial \tau}\right|_{\tau=0}=q_{i j}=\left.\lambda_{i j} e^{\lambda_{i j} \tau}\right|_{\tau=0}=\lambda_{i j}
$$

- In other words $q_{i j}$ is the rate of the Poisson process that activates the event that makes the transition from i to j.
- Next, consider the $q_{j j}$ thus

$$
\frac{\partial p_{i j}(t)}{\partial t}=p_{i j}(t) q_{j j}+\sum_{r \neq j} p_{i r}(t) q_{r j}
$$

- Evaluating this at $t=0$, we get that

$$
\left.\frac{\partial p_{i j}(t)}{\partial t}\right|_{t=0}=\left.q_{j j} \quad \Leftrightarrow \frac{\partial}{\partial t}\left[1-\widehat{p_{i j}}(t)\right]\right|_{t=0}=-q_{j j}
$$

Transition Rate Matrix \mathbf{Q}.

- The event that the MC will transition out of state i has exponential residual lifetime with rate $\Lambda(i)$, therefore, the probability that an event will occur in the interval $(t, t+\tau)$ given by $G_{i}(\tau)=1-\exp \{-\Lambda(i) \tau\}$.

$$
-q_{j j}=\left.\Lambda(i) e^{-\Lambda(i) \tau}\right|_{\tau=0}=\Lambda(i)
$$

- Note that for each row i, the sum

$$
\sum_{j} q_{i j}=0
$$

Transition Probabilities \mathbf{P}.

- Suppose that state transitions occur at random points in time $T_{1}<T_{2}<\ldots<T_{k}<\ldots$
- Let X_{k} be the state after the transition at T_{k}
- Define

$$
P_{i j}=\operatorname{Pr}\left\{X_{k+1}=j \mid X_{k}=i\right\}
$$

- Recall that in the case of the superposition of two or more Poisson processes, the probability that the next event is from process j is given by λ_{j} / Λ.
- In this case, we have

$$
P_{i j}=\frac{q_{i j}}{-q_{i i}}, i \neq j \quad \text { and } \quad P_{i i}=0
$$

Example

- Assume a transmitter where packets arrive according to a Poisson process with rate λ.
- Each packet is processed using a First In First Out (FIFO) policy.
- The transmission time of each packet is exponential with rate μ.
- The transmitter has buffer to store up to two packets that wait to be transmitted.
- Packets that find the buffer full are lost.
- Draw the state transition diagram.
- Find the Rate Transition Matrix \mathbf{Q}.
- Find the State Transition Matrix P

Example

- The rate transition matrix is given by

$$
\mathbf{Q}=\left[\begin{array}{cccc}
-\lambda & \lambda & 0 & 0 \\
\mu & -(\lambda+\mu) & \lambda & 0 \\
0 & \mu & -(\lambda+\mu) & \lambda \\
0 & 0 & \mu & -\mu
\end{array}\right]
$$

- The state transition matrix is given by
$\left[\begin{array}{cccc}0 & (\lambda+\mu) & 0 & 0 \\ \mu & 0 & \lambda & 0 \\ 0 & \mu & 0 & \lambda \\ 0 & 0 & (\lambda+\mu) & 0\end{array}\right]$

State Probabilities and Transient Analysis

- Similar to the discrete-time case, we define

$$
\pi_{j}(t) \equiv \operatorname{Pr}\{X(t)=j\}
$$

- In vector form

$$
\boldsymbol{\pi}(t)=\left[\pi_{1}(t), \pi_{2}(t), \ldots\right]
$$

- With initial probabilities

$$
\boldsymbol{\pi}(0)=\left[\pi_{1}(0), \pi_{2}(0), \ldots\right]
$$

- Using our previous notation (for homogeneous MC)

$$
\boldsymbol{\pi}(t)=\boldsymbol{\pi}(0) \mathbf{P}(t)=\boldsymbol{\pi}(0) e^{\mathbf{Q}^{2}} \quad \begin{aligned}
& \text { Obtaining a general } \\
& \text { solution is not easy! }
\end{aligned}
$$

- Differentiating with respect to t gives us more "inside"

$$
\frac{d \boldsymbol{\pi}(t)}{d t}=\boldsymbol{\pi}(t) \mathbf{Q} \Leftrightarrow \frac{d \pi_{j}(t)}{d t}=q_{j j} \pi_{j}(t)+\sum_{i \neq j} q_{i j} \pi_{i}(t)
$$

"Probability Fluid" view

- We view $\pi_{\mathrm{j}}(t)$ as the level of a "probability fluid" that is stored at each node j ($0=$ empty, $1=$ full).

Steady State Analysis

- Often we are interested in the "long-run" probabilistic behavior of the Markov chain, i.e.,

$$
\pi_{j}=\lim _{t \rightarrow \infty} \pi_{j}(t)
$$

- These are referred to as steady state probabilities or equilibrium state probabilities or stationary state probabilities
- As with the discrete-time case, we need to address the following questions
\square Under what conditions do the limits exist?
\square If they exist, do they form legitimate probabilities?
\square How can we evaluate these limits?

Steady State Analysis

- Theorem: In an irreducible continuous-time Markov Chain consisting of positive recurrent states, a unique stationary state probability vector π with

$$
\pi_{j}=\lim _{t \rightarrow \infty} \pi_{j}(t)
$$

- These vectors are independent of the initial state probability and can be obtained by solving

$$
\boldsymbol{\pi} \mathbf{Q}=\mathbf{0} \quad \text { and } \quad \sum \pi_{j}=1
$$

- Using the "probability fluid" view

Example

- For the previous example, with the above transition function, what are the steady state probabilities
- Solve

$$
\begin{aligned}
& \boldsymbol{\pi} \mathbf{Q}=\left[\begin{array}{llll}
\pi_{0} & \pi_{1} & \pi_{2} & \pi_{3}
\end{array}\right]\left[\begin{array}{cccc}
-\lambda & \lambda & 0 & 0 \\
\mu & -(\lambda+\mu) & \lambda & 0 \\
0 & \mu & -(\lambda+\mu) & \lambda \\
0 & 0 & \mu & -\mu
\end{array}\right]=\mathbf{0} \\
& \pi_{0}+\pi_{1}+\pi_{2}+\pi_{3}=1
\end{aligned}
$$

Example

- The solution is obtained

$$
\begin{array}{cl}
-\lambda \pi_{0}+\mu \pi_{1}=0 & \Rightarrow \pi_{1}=\frac{\lambda}{\mu} \pi_{0} \\
\lambda \pi_{0}-(\lambda+\mu) \pi_{1}+\mu \pi_{2}=0 & \Rightarrow \pi_{2}=\left(\frac{\lambda}{\mu}\right)^{2} \pi_{0} \\
\lambda \pi_{1}-(\lambda+\mu) \pi_{2}+\mu \pi_{3}=0 & \Rightarrow \pi_{3}=\left(\frac{\lambda}{\mu}\right)^{3} \pi_{0}
\end{array}
$$

$$
\pi_{0}+\pi_{1}+\pi_{2}+\pi_{3}=1 \Rightarrow \quad \pi_{0}=\frac{1}{1+\left(\frac{\lambda}{\mu}\right)+\left(\frac{\lambda}{\mu}\right)^{2}+\left(\frac{\lambda}{\mu}\right)^{3}}
$$

Birth-Death Chain

- Find the steady state probabilities
- Similarly to the previous example,

$$
\mathbf{Q}=\left[\begin{array}{cccc}
-\lambda_{0} & \lambda_{0} & 0 & \cdots \\
\mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & \cdots \\
0 & \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- And we solve

$$
\boldsymbol{\pi} \mathbf{Q}=\mathbf{0} \quad \text { and } \quad \sum_{i=0}^{\infty} \pi_{i}=1
$$

Example

- The solution is obtained

$$
-\lambda_{0} \pi_{0}+\mu_{1} \pi_{1}=0 \quad \Rightarrow \pi_{1}=\frac{\lambda_{0}}{\mu_{1}} \pi_{0}
$$

$$
\begin{aligned}
& \lambda_{0} \pi_{0}-\left(\lambda_{1}+\mu_{1}\right) \pi_{1}+\mu_{2} \pi_{2}=0 \quad \Rightarrow \pi_{2}=\left(\frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}}\right) \pi_{0} \\
& \text { In aeneral }
\end{aligned}
$$

- In general

$$
\lambda_{j-1} \pi_{j-1}-\left(\lambda_{j}+\mu_{j}\right) \pi_{j}+\mu_{j+1} \pi_{j+1}=0 \quad \Rightarrow \pi_{j+1}=\left(\frac{\lambda_{0} \ldots \lambda_{j}}{\mu_{1} \ldots \mu_{j+1}}\right) \pi_{0}
$$

- Making the sum equal to 1

$$
\pi_{0}\left(1+\sum_{j=1}^{\infty}\left(\frac{\lambda_{0} \ldots \lambda_{j-1}}{\mu_{1} \ldots \mu_{j}}\right)\right)=1
$$

Solution exists if

$$
S=1+\sum_{j=1}^{\infty}\left(\frac{\lambda_{0} \ldots \lambda_{j-1}}{\mu_{1} \ldots \mu_{j}}\right)<\infty
$$

Uniformization of Markov Chains

- In general, discrete-time models are easier to work with, and computers (that are needed to solve such models) operate in discrete-time
- Thus, we need a way to turn continuous-time to discretetime Markov Chains

- Uniformization Procedure

Recall that the total rate out of state i is $-q_{i i}=\Lambda(i)$. Pick a uniform rate γ such that $\gamma \geq \Lambda(i)$ for all states i.
\square The difference $\gamma-\Lambda(i)$ implies a "fictitious" event that returns the MC back to state i (self loop).

Uniformization of Markov Chains

- Uniformization Procedure

Let $P^{U}{ }_{i j}$ be the transition probability from state i to state j for the discrete-time uniformized Markov Chain, then

