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Little’s Law
" JE

m a(?): the process that counts the number of arrivals up to .
m d(7): the process that counts the number of departures up to .

m N(O)= a(9)- d(t) a(?)
d(?)
|_A_, ’J Area y(1)
N(t) |
I
Time ¢

m Average arrival rate (up to ¢) 4,= a(?)/t
m Average time each customer spends in the system 7= y(¢)/a(¢)
m Average number in the system N,= y(¢)/¢

Little’s Law

a(?)
d(?)

’_,_A_/ H Area y(7)
| -

Time ¢
Nt = A'IT;
m Taking the limit as ¢ goes to infinity

=1
FlI=2£1T]

Expected number of Expected time in the system

customers in the system

Arrival rate IN the system




Generality of Little’s Law
" J
E[N]=2E[T]
Little’s Law is a pretty general result
It does not depend on the arrival process distribution

It does not depend on the service process distribution

It does not depend on the number of servers and buffers
in the system.

A Queueing
—_—
Aggregate Network
Arrival rate

Specification of Queueing Systems

" JE——
“m Customer arrival and service stochastic models
m Structural Parameters
Number of servers
Storage capacity
m Operating policies

Customer class differentiation (are all customers
treated the same or do some have priority over others?)

Scheduling/Queueing policies (which customer is
served next)

Admission policies (which/when customers are
admitted)



Queueing System Notation
" J

Arrival Process Service Process
M: Markovian M: Markovian
*D: Deterministic *D: Deterministic
*Er: Erlang *Er: Erlang

*G: General A/B/m/KlN *G: General

_

Number of
servers m=1,2,...

Number of customers
Storage Capacity K= N=12,...
L2,... _ (for closed networks
(if = then it is omitted) otherwise it is omitted)

Performance Measures of Interest
=

m \We are interested in steady state behavior

Even though it is possible to pursue transient results, it is a
significantly more difficult task.

m E[S] average system time (average time spent in the
system)

m E[//] average waiting time (average time spent waiting
in queue(s))

m E[X] average queue length

m E[U] average utilization (fraction of time that the
resources are being used)

m E[R] average throughput (rate that customers leave the
system)

m E[L] average customer loss (rate that customers are lost
or probability that a customer is lost)



Recall the Birth-Death Chain Example

|

XO Kl ?&2__) —%11%\ }\'._1 7;{»—)
mme M3 Jﬁ—_l,/ ~ Mt

m At steady state, we obtain 1

—A T, + U, =0 =T = ;07?0
m |n general 1
Ay
lj—lﬂj—l a (ﬂ’j TH, )ﬂ:j TH T, = 0 =y = T,
Myl

m Making the sum equal to 1

Solution exists if

waltor
o (D e (hA
(3 i

M/M/1 Example

m Meaning: Poisson Arrivals, exponentially distributed service
times, one server and infinite capacity buffer.

e P
m Using the birth-death result 2,=4 and x,=u, we obtain

Z{ ]
T, :(—J w,, j=0,12,..
m Therefore H

oo J T :1—
ANEDY A =1 forAu=p<l1 ’ p '
=\ M ﬂj=(1—p)p], j=1,2,...



M/M/1 Performance Metrics
" JE

m Server Utilization
E[ul=)7, =1-7,=1-(1-p)=p

J=1

m Throughput _
E[Rl=u),m, =u(l-m)=pup= 4
j=1

dip’ }

dp

_ d I il d 1 __ P
"’“"’)%{sz }‘p(l‘p)dp{<l—p>}‘<1—p>

m Expected Queue Length
Elx1=) jr,=(1-p)Y ip’ =p(1-p),
Jj=0 Jj=0 Jj=0

M/M/1 Performance Metrics
"

m Average System Time
1
E[x]=AE[S]= E[S]=IE[X]

I p 1
Els]=——Ft—=
A(l-p) wu(-p)

m Average waiting time in queue

E[SI=EWI+Elz]= Elw]=El[S]-E[Z]

1 _l: Jo,
u(l-p) u u(-p)

Elw]=



M/M/1 Performance Metrics Examples

" J
m u=0.5
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PASTA Property
" S

m PASTA: Poisson Arrivals See Time Averages
m Let 7tj(t)= Pr{ System state X(¢)= }
m Let a(0)=Pr{ Arriving customer at 7 finds X(¢)= }

m |n general z(?) # a(?)!
Suppose a D/D/1 system with interarrival times equal to 1 and
service times equal to 0.5

a a a a
Y Y A 4 Y

0 0.5 1.0 1.5 20 25 3.0
m Thus 7z,(¢)= 0.5 and z,(¢)= 0.5 while a,(¥)= 1 and a,(¢)= 0!

Y



Theorem
" JE

m For a queueing system, when the arrival process is Poisson
and independent of the service process then, the probability
that an arriving customer finds j customers in the system is
equal to the probability that the system is at state j. In other

words, a;,(t)=m, ()=Pr{X()=j} Jj=0,1..
= Proof: | Arrival ocours in interval (1,A7) |
a, (1) = lim Pr{X (1) = j| a(r,1+ An)}
Pri{X (r)=j,a(t,t+At)}
Tt Prla(ni+ An)L
Pr{X (1) = j}Pri{a(t,t+ A1)}
= 0 Pria(r,r+Ar)}

=Pr{X()=j}=7,(1)

M/M/m Queueing System

m Meaning: Poisson Arrivals, exponentially distributed service
times, m identical servers and infinite capacity buffer.

A
mmo 3w mﬂ\_#

if0< j<m

ifj=>m

lland,u{
mu



M/M/m Queueing System

" JE
m Using the general birth-death result _
l J m 2/ J
n,=—|— | 7, if j<m mo=2] 2 ,, if j=m
.' J
J\H mi
m Letting p=1/(mu) we get

(mp)

r, if j<m
m" p’

m!

r, ifjzm

m To find 7,

[1+2( mp) 2 - ]:1 :ﬂ0:(1+§(ml.3)f+nq(:7(qlp_)';)]

j=m

M/M/m Performance Metrics
" S

[ | Server Utlllzatlon o ( ; _ ;
E[U]= 2]71' +mPr{X >m} = ﬂ( W 2:,” . j
(mp) (mp)

=7, (mp)+2 _1)' m!(l—p)J
I (mp)™" (mp)"" _(mp)"  m(mp)"
P! 2 (j- 1)' (m-1)! (m—l)!+m!(1—/0)]
ol 1. & () (mp)”
S| 12 +m!(1—p)]
1 A
=nymp—=mp =—



M/M/m Performance Metrics

" JE
m Throughput
E[R]= ,LtZ]TL’ +m,u2n' =

m Expected Queue Length

Elx]= Zﬂr —ﬂ{ZJ(’”’.)) m!ijf]:--

E[X]=mp+( mp)" _ p .
v Using Lt "t (-p)
g Little’s Law (mp )’
1 1 mp P
ElS|=—FE =— +
[s1=2Elx]=— mp+—2 (1—p) OJ

m Average Waiting time in queue

E[W1=E[s]—%

M/M/m Performance Metrics

" JEE
m Queueing Probability

_ NN _m"p! _m, (mp)”
PQ—Pr{XZm}—;nnj—ﬂO;n " mi—p)

Erlang C Formula




Example
" JEE

m Suppose that packets arrive according to a Poisson
process with rate 2=1. You are given the following two
options,

Install a single transmitter with transmission capacity ;= 1.5
Install two identical transmitters with transmission capacity x,= 0.75
and u,=0.75

Split the incoming traffic to two queues each with probability 0.5 and
have 1,=0.75 and u;= 0.75 transmit from each queue.

A, <EZ>_» Aq< £
B
A o @ - H3
(1)

Example
" JE

m Throughput
m [t is easy to see that all three systems have the same
throughput E[R,]= E[R;]= E[R]=A
m Server Utilization

A 1 2
Eu,)= 2= 122
u 15 3
A | 4 . .
E [UB ] =—=——=— Therefore, each server is 2/3 utilized
u, 075 3
) 1 2
E[UC _ 0.54 2

W, 2x075 3

m Therefore, all transmitters are similarly loaded.



Example

" J
m Probability of being idle

A1
Ty =1=—=~
K3
1+2(mp) (mp)" |_ 1+ +[ ]
J=1 m!(l—p) 2(1 2)
3
oo =1— AL i
0C 2u, 3 For each transmitter
Example

" JE
m Queue length and delay

A 1
E[XA]:ul—l:1.5—1:2 E[S,]== E[X] 2

E[XB]:mp+(mp)m P n:E E[S,]=— E[X ]——

o (py S

2 .
E [ch]z Al = 0-5 =2  For each queue!
w,—A/2 0.75-0.5

= E[X,.]=2%xE[X,.]=4 E[X.]== E[X] 4



M/M/oo Queueing System

m Special case of the M/M/m system with m going to «
A A A A A

A
P P
\.3_% "w
A;=A and p,=ju forallj
m Let p=A/u then, the state probabilities are given by

J TP
ﬂj:p—.ﬂfo l-l-zp 1:>7Z'0=€_p :ﬂj:p ]
]' ]1] .]'

m System Utilization and Throughput
Elul=1-n,=1-¢€¢" E[R]=1

M/M/xc Performance Metrics

m Expected Number in the System

) oo j oo pj—l
E[x]=) jm, —'e_p =pe’” P

\ =0 J = (j-1)! -

Number of busy servers

m Using Little’s Law

No queueing!

_1 _1i_1 -
E[S]—AE[X]—/I/J p



M/M/1/K — Finite Buffer Capacity

m Meaning: Poisson Arrivals, exponentially distributed service
times, one server and finite capacity buffer K.
A A

Ao A
PN

m Using the birth-death rje_sult A= and w;=u, we obtain

T, =(i] n,, j=0,12,..K

m Therefore H

1-p

. 7{0:1 K+1

[ i[’ln 1 for i P
T+ 1= |7 n=p N

=i 7rj=w, j=12,.K
K
I-p

M/M/1/K Performance Metrics

m Server Utilization

1— p(1-p*
E[U]zl_ﬂ:ozl_l(_pg?l: 1(_p£+1)
m Throughput

1-p*
E[R]:y(l—rco):)ul_pK+1 <A

m Blocking Probability

(1-p)p*
-%=ﬂ§=jj;ar

Probability that an arriving customer
finds the queue full (at state K)




M/M/1/K Performance Metrics

" JE
m Expected Queue Length

K K . d
E[X]ZZ‘]?Z-J K+12 ! (1 pK)fl)z {p}

j=0

(1 p)pd p)pd p“ _
1 pK+l dp = 0 1 pK+l dp (1_p)

_(=p)p[(=p*")-(A-p)K+Dp" |_
l_pK+l (l—p)z

1_ K
:1 pK+l[ P _KPKJ
-p*{ 1-p

Net arrival rate (no losses)

m System time
Elx]=A(-m,)E[S]

M/M/m/m — Queueing System

m Meaning: Poisson Arrivals, exponentially distributed service

times, m servers and no storage capacity.
A A A A A

@, @ . @y,
m Using the birth-death re?ult A=/ and w;=u, we obtain
T, :i(ij w,, j=0,1,2,..m

m Therefore JHH N
T, = —
0 [JO ]! ]

m 1 (A
7o 2_-{_) =1 forpu=p J
=0 ]\ M p
T.="—n

J ‘) 0>

J:

j=12,..m



M/M/m/m Performance Metrics

" J
m Blocking Probability

"/m! — |Erlang B F I
P=x _p/m rlang B Formula

S
\ j=0 J!

Probability that an arriving customer
finds all servers busy (at state m)

m Throughput

"/ m!
E[R]=l(1—ﬂm)=l(1—§m nz,]<l

J!

M/M/1//IN — Closed Queueing System
"

m Meaning: Poisson Arrivals, exponentially distributed service
times, one server and the number of customers are fixed to N.

. @7 m Using the birth-death result,
we obtain
N!
.= T, j=12,..N
J (N—])'p 0 .]
N N' -1
T, = p’
" Lzé (N-))! }
NA (N-1)} (N-2) 2x

@0, 6. . 6, W



M/M/1/IN — Closed Queueing System

N (N-DA (N- Dh 2n

oo E

m Response Time
Time from the moment the customer entered the queue until it
received service.

m For the queue, using Little’s law we get,
Elx]=u(l-m,)E[S]
m |n the “thinking” part,
E[N-x]=u(l- ﬂo)—
m Therefore N-u(l- ,[0)
E[S]=

N1
p(l-rm,) U(l_ﬂo) A




