Queueing Theory II

Summary

- M/M/1 Output process
- Networks of Queue
- Method of Stages
\square Erlang Distribution
\square Hyperexponential Distribution
- General Distributions
\square Embedded Markov Chains

M/M/1 Output Process

- Burke's Theorem:
- The Departure process of a stable $\mathrm{M} / \mathrm{M} / 1$ queueing system with arrival rate λ is also a Poisson process with rate λ.

Burke's Theorem

$$
\left.\left.\begin{array}{l}
\left.\begin{array}{rl}
\operatorname{Pr}\left\{Y_{k} \leq y\right\}= & \operatorname{Pr}\left\{Y_{k} \leq y \mid\right.
\end{array} \quad X\left(A_{k}^{-}\right)=0\right\} \operatorname{Pr}\left\{X\left(A_{k}^{-}\right)=0\right\} \\
\\
\quad+\operatorname{Pr}\left\{Y_{k} \leq y \mid X\left(A_{k}^{-}\right)>0\right\} \operatorname{Pr}\left\{X\left(A_{k}^{-}\right)>0\right\}
\end{array}\right\} \begin{array}{rl}
\operatorname{Pr}\left\{X\left(A_{k}^{-}\right)=0\right\}=\pi_{0}=1-\rho — \text { PASTA }
\end{array}\right\} \begin{aligned}
& \operatorname{Pr}\left\{X\left(A_{k}^{-}\right)>0\right\}=1-\pi_{0}=\rho \\
& \operatorname{Pr}\left\{Y_{k} \leq y \mid X\left(A_{k}^{-}\right)>0\right\}= \operatorname{Pr}\left\{Z_{k} \leq y\right\}=1-e^{-\mu y} \\
& \operatorname{Pr}\left\{Y_{k} \leq y \mid X\left(A_{k}^{-}\right)=0\right\}= \operatorname{Pr}\left\{I_{k}+Z_{k} \leq y\right\}= \\
&= \frac{\mu}{\mu-\lambda}\left[1-e^{-\lambda y}\right]-\frac{\lambda}{\mu-\lambda}\left[1-e^{-\mu y}\right]
\end{aligned}
$$

Two Queues in Series

- Let the state of this system be $\left(X_{1}, X_{2}\right)$ where X_{i} is the number of customers in queue i.

Two Queues in Series

- Balance Equations

$$
\lambda \pi_{00}=\mu_{2} \pi_{01}
$$

$$
\left(\lambda+\mu_{1}\right) \pi_{n 0}=\mu_{2} \pi_{n, 1}+\lambda \pi_{n-1,0}, \quad n>0
$$

$$
\left(\lambda+\mu_{2}\right) \pi_{0 m}=\mu_{2} \pi_{0, m+1}+\mu_{1} \pi_{1, m-1}, \quad m>0
$$

$$
\left(\lambda+\mu_{1}+\mu_{2}\right) \pi_{n m}=
$$

$$
\lambda \pi_{n-1, m}+\mu_{1} \pi_{n+1, m-1}+\mu_{2} \pi_{n, m+1}, \quad n, m>0
$$

$$
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \pi_{n m}=1
$$

Product Form Solution

- Let $\rho_{1}=\lambda / \mu_{1}, \rho_{2}=\lambda / \mu_{2}$

$$
\pi_{n m}=\left(1-\rho_{1}\right) \rho_{1}^{n}\left(1-\rho_{2}\right) \rho_{2}^{m}
$$

- Recall the $M / M / 1$ Results

$$
\pi_{n}=(1-\rho) \rho^{n}
$$

- Therefore the two queues can be "decoupled" and studied in isolation.

$$
\pi_{n m}=\pi_{n}^{1} \pi_{m}^{2}
$$

Jackson Networks

- The product form decomposition holds for all open queueing networks with Poisson input processes that do not include feedback
- Even though customer feedback causes the total input process (external Poisson and feedback) become nonPoisson, the product form solution still holds!
- These types on networks are referred to as Jackson Networks
- The total input rate to each note is given by

Closed Networks

- The product form decomposition holds for also for closed networks

Aggregate

 Rate $\Lambda_{i}=\sum_{j=1}^{n} \Lambda_{j} r_{j i}$ Routing Prob
Non-Poisson Processes

- Assume that the service time distribution can be approximated by the sum of m iid exponential random variables with rate $m \mu$. That is

$$
Z=\sum_{j=1}^{m} Y_{j} \quad \text { where } \quad Y_{j} \sim F_{Y}(y)=1-e^{-m \mu y}
$$

- You can show that the density of Z is given by

$$
f_{Z}(t)=\frac{m \mu(m \mu t)^{m-1}}{(m-1)!} e^{-m \mu t}, \quad t \geq 0
$$

$\square Z$ is an Erlang random variable with parameters (m, μ).

Erlang Distribution

- You can show that the distribution function of Z

$$
F_{Z}(t)=1-e^{-m \mu t} \sum_{j=0}^{m-1} \frac{(m \mu t)^{j}}{j!}, \quad t \geq 0
$$

- The expected value of Z is given by

$$
E[Z]=E\left[\sum_{j=1}^{m} Y_{j}\right]=\sum_{j=1}^{m} E\left[Y_{j}\right]=\sum_{j=1}^{m} \frac{1}{m \mu}=\frac{m}{m \mu}=\frac{1}{\mu}
$$

- The variance of Z is given by
$\operatorname{var}[Z]=\operatorname{var}\left[\sum_{j=1}^{m} Y_{j}\right]=\sum_{j=1}^{m} \operatorname{var}\left[Y_{j}\right]=\sum_{j=1}^{m} \frac{1}{(m \mu)^{2}}=\frac{m}{(m \mu)^{2}}=\frac{1}{m \mu^{2}}$
- Note that the variance of an Erlang is always less than or equal to the variance of the exponential random variable

$\mathrm{M} / \mathrm{Er}_{\mathrm{m}} / 1$ Queueing System

- Meaning: Poisson Arrivals, Erlang distributed service times (order m), single server and infinite capacity buffer.

Erlang Server

- Only a single customer is allowed in the server at any given time.
- The customer has to go through all m stages before it is released.

$\mathrm{M} / \mathrm{Er}_{\mathrm{m}} / 1$ Queueing System

- The state of the system needs to take into account the stage that the customer is in, so one could use (x, s) where $x=0,1,2 \ldots$ is the number of customers and $s=1, \ldots, m$ is the stage that the customer in service is currently in.
- Alternatively, one can use a single variable y to be the total number of stages that need to be completed before the system empties.
- Let $\mathrm{m}=2$

$\mathrm{Er}_{\mathrm{m}} / \mathrm{M} / 1$ Queueing System

- Similar to the $M / E r_{m} / 1$ System we can let the state be the number of arrival stages in the system, so for example, for $\mathrm{m}=2$

Hyperexponential Distribution

- Recall that the variance of the Erlang distribution is always less than or equal than the variance of the exponential distribution.
- What if we need service times with higher variance?

Hyperexponential Server

Hyperexponential Distribution

- Expected values if the Hyperexponential distribution

$$
E[Z]=\sum_{j=1}^{m} p_{j} E\left[Y_{j}\right]=\sum_{j=1}^{m} \frac{p_{j}}{\mu_{j}}
$$

- The variance of Z is given by

$$
\begin{gathered}
E\left[Z^{2}\right]=\sum_{j=1}^{m} p_{j} E\left[Y_{j}^{2}\right]=2 \sum_{j=1}^{m} \frac{p_{j}}{\mu_{j}^{2}} \\
\Rightarrow \operatorname{var}[Z]=E\left[Z^{2}\right]-(E[Z])^{2}=2 \sum_{j=1}^{m} \frac{p_{j}}{\mu_{j}^{2}}-\left(\sum_{j=1}^{m} \frac{p_{j}}{\mu_{j}}\right)^{2}
\end{gathered}
$$

$\mathrm{M} / \mathrm{H}_{\mathrm{m}} / 1$ Queueing System

- In this case, the state of the system should include both, the number of customers in the system and the stage that the customer in service is in. For example, for $\mathrm{m}=2$

M/G/1 Queueing System

■ When the arrival and service processes do not possess the memoryless property, we are back to the GSMP framework.

- In general, we will need to keep track of the age or residual lifetime of each event.
- Embedded Markov Chains

Some times it may be possible to identify specific points such that the Markov property holds
\square For example, for the M/G/1 system, suppose that we choose to observe the state of the system exactly after each customer departure.
\square For this problem, it doesn't matter how long ago the previous arrival occurred since arrivals are generated from Poisson processes.
Furthermore, at the point of a departure, we know that the age of the event is always 0 .

Embedded Markov Chains

- So, right after each departure we observe the following chain (only the transitions from state n are drawn)
- Let a_{j} be the probability that j arrivals will occur during the interval Y defined by two consecutive departures

- Let N be a random variable that indicates the number of arrivals during Y, then $a_{j}=\operatorname{Pr}\{N=j\}$.

Embedded Markov Chains

- Suppose we are given the density of $Y, f_{Y}(y)$ then

$$
a_{j}=\operatorname{Pr}\{N=j\}=\int_{0}^{\infty} \operatorname{Pr}\{N=j \mid Y=y\} f_{Y}(y) d y
$$

Since we have a Poisson process

$$
\operatorname{Pr}\{N=j \mid Y=y\}=\frac{(\lambda y)^{j}}{j!} e^{-\lambda y}
$$

- Therefore

$$
a_{j}=\int_{0}^{\infty} \frac{(\lambda y)^{j}}{j!} e^{-\lambda y} f_{Y}(y) d y
$$

State Iteration

- Let X_{k} be the state of the system just after the departure of the k th customer

$$
X_{k}=X_{k-1}+N_{k}
$$

Arrivals During Y_{k}

$$
X_{k}=X_{k-1}+N_{k}-1\left\{X_{k-1}>0\right\}
$$

M/G/1 Queueing System

- Pollaczek-Khinchin (PK) Formula

$$
E[X]=\frac{\rho}{1-\rho}-\frac{\rho^{2}}{2(1-\rho)}\left(1-\mu^{2} \sigma^{2}\right)
$$

where
$\square X$ is the number of customers in the system$1 / \mu$ is the average service time
$\square \sigma^{2}$ is the variance of the service time distribution
$\square \lambda$ is the Poisson arrival rate
$\square \rho=\lambda / \mu$ is the traffic intensity

M/G/1 Example

- Consider the queueing systems $M / M / 1$ and $M / D / 1$
- Compare their average number in the system and average system delay when the arrival is Poisson with rate λ and the mean service time is $1 / \mu$.
- For the $\mathrm{M} / \mathrm{M} / 1$ system, $\sigma^{2}=1 / \mu^{2}$, therefore

$$
E[X]_{M / M / 1}=\frac{\rho}{1-\rho} \quad E[S]_{M / M / 1}=\frac{1 / \mu}{1-\rho}
$$

- For the M/D/1 system, $\sigma^{2}=0$, therefore

$$
E[X]_{M / D / 1}=\frac{\rho}{(1-\rho)}\left(1-\frac{\rho}{2}\right) \quad E[S]_{M / D / 1}=\frac{1 / \mu}{1-\rho}\left(1-\frac{\rho}{2}\right)
$$

