
Queueing Theory II 

Summary  

!  M/M/1 Output process 
!  Networks of Queue 
!  Method of Stages 

" Erlang Distribution 
" Hyperexponential Distribution 

!  General Distributions 
" Embedded Markov Chains 



M/M/1 Output Process 

!  Burke’s Theorem:  
!  The Departure process of a stable M/M/1 queueing system 

with arrival rate ! is also a Poisson process with rate !.  
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Two Queues in Series 

!  Let the state of this system be (X1,X2) where Xi is the 
number of customers in queue i.    
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Two Queues in Series 

!  Balance Equations 
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Product Form Solution 

!  Let "1=!/µ1, "2=!/µ2 

!  Recall the M/M/1 Results 

!  Therefore the two queues can be “decoupled” and studied in 
isolation. 

Jackson Networks 

!  The product form decomposition holds for all open 
queueing networks with Poisson input processes that do 
not include feedback  

!  Even though customer feedback causes the total input 
process (external Poisson and feedback) become non-
Poisson, the product form solution still holds! 

!  These types on networks are referred to as Jackson 
Networks  

!  The total input rate to each note is given by  
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Closed Networks 

!  The product form decomposition holds for also for closed 
networks  
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Non-Poisson Processes 

!  Assume that the service time distribution can be 
approximated by the sum of m iid exponential random 
variables with rate mµ.  That is   

!  You can show that the density of Z is given by    

! Z is an Erlang random variable with parameters (m, µ). 



Erlang Distribution 

!  You can show that the distribution function of Z   

!  The expected value of Z is given by   

!  The variance of Z is given by   

!  Note that the variance of an Erlang is always less than or equal to the 
variance of the exponential random variable 

M/Erm/1 Queueing System 

!  Meaning: Poisson Arrivals, Erlang distributed service times 
(order m), single server and infinite capacity buffer. 
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!  Only a single customer is allowed in the server at any given 
time. 

!  The customer has to go through all m stages before it is 
released. 



M/Erm/1 Queueing System 

!  The state of the system needs to take into account the 
stage that the customer is in, so one could use (x,s) where 
x=0,1,2… is the number of customers  and s=1,…,m is the 
stage that the customer in service is currently in.   

!  Alternatively, one can use a single variable y to be the total 
number of stages that need to be completed before the 
system empties. 

!  Let m=2 

! ! ! ! ! ! ! 
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Erm/!/1 Queueing System 

!  Similar to the M/Erm/1 System we can let the state be the 
number of arrival stages in the system, so for example, for  
m=2 
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Hyperexponential Distribution  

!  Recall that the variance of the Erlang distribution is always 
less than or equal than the variance of the exponential 
distribution. 

!  What if we need service times with higher variance? 
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Hyperexponential Distribution  

!  Expected values if the Hyperexponential distribution 

!  The variance of Z is given by   



M/Hm/1 Queueing System 

!  In this case, the state of the system should include both, 
the number of customers in the system and the stage that 
the customer in service is in.  For example, for m=2 
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M/G/1 Queueing System 

!  When the arrival and service processes do not possess the 
memoryless property, we are back to the GSMP framework.   

!  In general, we will need to keep track of the age or residual 
lifetime of each event. 

!  Embedded Markov Chains 
"  Some times it may be possible to identify specific points such that the 

Markov property holds 
"  For example, for the M/G/1 system, suppose that we choose to 

observe the state of the system exactly after each customer 
departure.   

"  For this problem, it doesn’t matter how long ago the previous arrival 
occurred since arrivals are generated from Poisson processes.  
Furthermore, at the point of a departure, we know that the age of the 
event is always 0.   



Embedded Markov Chains 

!  So, right after each departure we observe the following 
chain (only the transitions from state n are drawn) 

!  Let aj be the probability that j arrivals will occur during the 
interval Y defined by two consecutive departures 
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!  Let N be a random variable that indicates the number of 
arrivals during Y, then aj = Pr{N = j}. 

Embedded Markov Chains 

!  Suppose we are given the density of Y, fY(y) then  

!  Since we have a Poisson process 

!  Therefore 



State Iteration  

!  Let Xk be the state of the system just after the departure of 
the kth customer  
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M/G/1 Queueing System 

!  Pollaczek-Khinchin (PK) Formula  

where 
" X is the number of customers in the system  
" 1/µ is the average service time 
" #2 is the variance of the service time distribution 
" ! is the Poisson arrival rate 
" "=!/µ is the traffic intensity 



M/G/1 Example 

!  Consider the queueing systems M/M/1 and M/D/1 
!  Compare their average number in the system and average 

system delay when the arrival is Poisson with rate ! and 
the mean service time is 1/µ.   

!  For the M/M/1 system, #2=1/µ2, therefore 

!  For the M/D/1 system, #2=0, therefore 


