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M/M/1 Output Process

" JE
m Burke’s Theorem:

m The Departure process of a stable M/M/1 queueing system
with arrival rate / is also a Poisson process with rate 4.
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Two Queues in Series
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m Let the state of this system be (X,X,) where X; is the
number of customers in queue i. .~

Two Queues in Series

" JEEE
m Balance Equations
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Product Form Solution

" JE
m Letp=u,, p=ti,

7, =(1=p)p (1=p,)p;
m Recall the M/M/1 Results
z,=(1-p)p"

m Therefore the two queues can be “decoupled” and studied in

isolation.
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Jackson Networks
= S

m The product form decomposition holds for all open
queueing networks with Poisson input processes that do
not include feedback

m Even though customer feedback causes the total input
process (external Poisson and feedback) become non-
Poisson, the product form solution still holds!

m These types on networks are referred to as Jackson
Networks

m The total input rate to each note is given by
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Closed Networks
" JE

m The product form decomposition holds for also for closed
networks
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Non-Poisson Processes
=

m Assume that the service time distribution can be
approximated by the sum of m iid exponential random
variables with rate mu. That is

Z:ZYJ. where Y, ~F, (y)=1-e""
j=1
m You can show that the density of Z is given by
m—1
mll’l (m‘l,[t) e—m,ut
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mZ is an Erlang random variable with parameters (m, u).
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Erlang Distribution
" JE

m You can show that the distribution function of Z
mut
F,(1)=1- e—mwz( “), >0

m The expected value of Z is given by
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m The variance of Z is given by

Var[z]:var[in} Svarl1]-3. =L
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m Note that the variance of an Erlang is always less than or equal to the
variance of the exponential random variable

M/Er._/1 Queueing System

m Meaning: Poisson Arrivals, Erlang distributed service times
(order m), single server and infinite capacity buffer.
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Stage 1 Stage 2 Stage m Erlang
\_ . Server

m Only a single customer is allowed in the server at any given
time.

m The customer has to go through all m stages before it is
released.



M/Er /1 Queueing System
" JE

m The state of the system needs to take into account the
stage that the customer is in, so one could use (x,s) where

x=0,1,2... is the number of customers and s=1,...,m is the
stage that the customer in service is currently in.

m Alternatively, one can use a single variable y to be the total
number of stages that need to be completed before the
system empties.

m Let m=2

Er_/M/1 Queueing System
" JEE

m Similar to the M/Er /1 System we can let the state be the
number of arrival stages in the system, so for example, for
m=2




Hyperexponential Distribution
" JE

m Recall that the variance of the Erlang distribution is always
less than or equal than the variance of the exponential
distribution.

m What if we need service times with higher variance?
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Hyperexponential Distribution
" JE—

m Expected values if the Hyperexponential distribution

E(Z]= ZPEUJ >

Jj= IIL[
m The variance of Z is given by
P
E[z2]= Zp E|Y]]|=2 u’
j=1

= var[z]= E[2*]-(E[z]) = zip_jz_[zz_]J



M/H_/1 Queueing System

m In this case, the state of the system should include both,
the number of customers in the system and the stage that
the customer in service is in. For example, for m=2

M/G/1 Queueing System

m \When the arrival and service processes do not possess the
memoryless property, we are back to the GSMP framework.

m |In general, we will need to keep track of the age or residual
lifetime of each event.

m Embedded Markov Chains

Some times it may be possible to identify specific points such that the
Markov property holds

For example, for the M/G/1 system, suppose that we choose to

observe the state of the system exactly after each customer
departure.

For this problem, it doesn’t matter how long ago the previous arrival
occurred since arrivals are generated from Poisson processes.
Furthermore, at the point of a departure, we know that the age of the
event is always 0.




Embedded Markov Chains

" JAE
m So, right after each departure we observe the following
chain (only the transitions from state » are drawn)

m Let g, be the probability that j arrivals will occur during the
interval Y defined by two consecutive departures

m Let N be a random variable that indicates the number of
arrivals during ¥, then a;= Pr{N =}.

Embedded Markov Chains

" J
m Suppose we are given the density of Y, f,(y) then

= Pr{N =)= [Pe{N =17 =331, ()

m Since we have a Poisson process
(ly)
Pr{N jlY = y}—

m Therefore

T l%) fy (v)dy



State Iteration

" JEE
m Let X, be the state of the system just after the departure of
the kth customer
Ay X, Xt X
X1 l
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| Arrivals During ¥, |

X, =X, +N, _I{Xk—l > O}

M/G/1 Queueing System

* J
m Pollaczek-Khinchin (PK) Formula

where
X is the number of customers in the system
1/u is the average service time
o is the variance of the service time distribution
A is the Poisson arrival rate
p=Au is the traffic intensity

Y



M/G/1 Example

Consider the queueing systems M/M/1 and M/D/1

Compare their average number in the system and average
system delay when the arrival is Poisson with rate A and
the mean service time is 1/u.

For the M/M/1 system, o°=1/u?, therefore
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For the M/D/1 system, ¢°=0, therefore
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