University of Cyprus Biomedical Imaging and Applied Optics

ECE 370 Introduction to Biomedical Engineering

Bioelectricity

2

Membrane Potential

- Opposite charges attract and similar repel
- Membrane potential → opposite charges across the membrane
 - Equal number of + and on each side → electrically neutral
 - Charges separated (more + on one side, more – on other) → electrical potential
 - Measured in V
 - More charge $\rightarrow \uparrow V$

• Note:

 Only a very small number of charges is involved → majority of ECF and ICF is still neutral

3

Membrane Potential

All cells are electrically polarized

lons flow through leakage channels

- Concentration gradient vs. Electrical Gradient
- Tend to go to their equilibrium potential (Nerst equation)
 - Na+ ~ +30 mV
 - K+~ -90mV

Resting membrane potential

- Total potential at steady state → combination of all ions (~70 mV)
 - A- trapped only in cells
 - Na+ and K+ not at equilibrium → can diffuse through leakage channels (K+>Na+)
 - Concentration of Na+ and K+ maintained by Na+-K+-pump (most critical role) → requires continuous expenditure of energy

ION	Concen (millmol	Relative	
	Extracellul ar	Intracellul ar	ty
Na⁺	150	15	1
K+	5	150	50-75
A ⁻	0	65	0

$$E = \frac{RT}{zF} \ln \frac{C_o}{C_i} \qquad \text{Nerst Equation}$$

$$E = \frac{RT}{F} \ln \frac{\sum_{C^{+}} [C^{+}]_{o} + \sum_{A^{-}} [A^{-}]_{i}}{\sum_{C^{+}} [C^{+}]_{i} + \sum_{A^{-}} [A^{-}]_{o}}$$

GHK (Goldman-Hodgkin-Katz) eq. (for monovanent molecules)

- R: gas constant = 8.314472 (Volts Coulomb)/(Kelvin mol)
- F: Faraday constant = 96 485.3383 (Coulomb)/(mol)

z: Valance

T: Absolute temperature = 273.16 + °C (Kelvin)

Graded Potentials

- Local changes in membrane potential
 - Confined to a small area
 - Remaining cell is still at resting potential
 - Triggered by specific events
 - E.g. sensory stimuli, pacemaker potentials, etc
 - Gated channels (usually Na+) open
 - Magnitude and duration proportional to triggering event

Graded Potentials

- Graded potentials die out over short distances
 - Loss of charge
 - Magnitude decreases as it moves away from the point of origin
 - Completely disappear with a few mm

$$V = V_0 e^{-\frac{x}{\lambda}} \qquad \lambda = \sqrt{\frac{r_m}{r_i}}$$

- r_i inversly proportional to crosssectional area
 - \uparrow diameter $\rightarrow \downarrow r_i$
- ↑ r_m → better flow along the axis due to decrease loss of ions through the membrane

Copyright © 2002, Elsevier Science (USA). All rights reserved.

Large (~100 mV) changes in the membrane potential

- Can be initiated by graded potentials
- Unlike graded potentials action potentials propagate
- Transmit information

Changes during an action potential

- Gradual depolarization to threshold potential (-50 to -55 mV)
 - If not reached no action potential will occur
- Rapid depolarization (+30 mV)
 - Opening of voltage gated Na+ channels
- Rapid repolarization leading to hyperpolarization (-80 mV)
 - Inactivation of Na+ channels, opening of voltage gated K+ channels
- Resting potential restored (-70 mV)
 - All voltage gated channels closed
- Constant duration and amplitude for given cell type ("all-or-none")
 - E.g. Nerves → 1 msec

• AP are a result of changes in ion permeability

- Voltage-gated channels
 - Proteins which change conformation depending on potential
 - Allow passage of ions
 - Voltage-gated Na+ channels
 - Activation (immediate) and inactivation gates (delayed)
 - Voltage-gated K+ channels
 - Activation gate (delayed)

Voltage-gated Na⁺ channels

Voltage-gated K⁺ channels

<u>Time</u>	<u>Event</u>	Potential			
0 msec	Resting state All channels are closed Graded potential arrives Begins depolarization	- 70 mV	+60 +50 +40 +30	© Brooks/Cole - Thomson Learnin	
2 msec	Threshold reached Activation gates of Na+ channels open Activation gates of K+ channels begin to open slowly Inactivation gates of Na+ channels begin to close slowly	- 50 mV	(Vm) latin (Vm) (Vm) (Vm) (Vm) (Vm) (Vm) (Vm) (Vm)		
2.5 msec	Peak potential reached Inactivation gates of Na+ channels are now closed Activation gates of K+ channels are now open	30 mV	-30 - 30 - 40 - 20 - 40 - 20 - 40 - 20 - 50 - 50 - 50 - 50 - 50 - 50 - 5	potential	
3.75 msec	Hyperpolarized state Activation gates of K+ channels close	- 80 mV	-70 -80 -90	tential	
5 msec	Resting state Na+-K+-pump restores resting potential Na+ channels are reset to close but active	-70 mV	Time (msec)		

Neuron structure

- Input Zone
 - Dendrites (up to 400 000)
 - Cell Body
 - Have receptors which receive chemical signals
- Conduction zone
 - Axon or nerve fiber (axon hillock to axon terminals) <1 mm to >1m
- Output zone
 - Axon terminal

• Input

- Graded Potentials
- Generated in the dendrites as a response to chemical signals
- Can trigger action potentials in the axon

AP Propagation

- APs initiated at the axon hilloc
 - More voltage-gated channels
 → lower threshold
- Once initiated the AP travels the entire axon
 - Contiguous conduction
 - Saltatory conduction
- Contiguous conduction
 - Flow of ions → depolarization of adjacent area to threshold
 - As AP is initiated in adjacent area, the original AP is ending with repolarization
 - The AP itself does not travel, it is regenerated at successive locations (like "wave" in a stadium)

11

Action Potentials

Saltatory Propagation

- Some neurons are myelinated
 - Covered with myelin (lipid barrier)
 - No ion movement across myelinated areas
- Nodes of Ranvier
 - Areas between myelin sheaths
 - Ions can flow \rightarrow APs can form
- APs "jump" from node to node
 → information travels 50x
 faster, less work by pumps to
 maintain ion balance
- Loss of myelin can cause serious problems
 - E.g. multiple sclerosis

Refractory Period

- APs do not travel backwards
 - Local currents do not regenerate an AP in the previously-active-nowinactive area
- Certain time must pass before a second AP can be triggered → refractory period
- Absolute refractory period
 - During an AP
 - No APs can be triggered
- Relative refractory period
 - Na⁺ channels are mostly inactive
 - K⁺ channels are slow to close
 - After an AP → second AP can be triggered only be exceedingly strong signals
- Refractory period sets an upper limit to the frequency of APs →~2.5 KHz

Characteristics of APs

- How does strength vary? ٠
 - Always the same! \rightarrow All-or-None Law
 - Does not decrease during propagation
- How are stronger stimuli recognized?
 - Faster generation of APs \rightarrow **↑**Frequency
 - More neurons fire simultaneously
- What determines the speed of APs?
 - **Myelination** •
 - Neuron diameter (↑ diameter →↓ Resistance to local current → ↑ Speed)
 - Large myelinated fibers: 120 m/sec $(432 \text{ km/hr}) \rightarrow \text{urgent information}$
 - Small unmyelinated fiber: 0.7 m/sec $(2.5 \text{ km/hr}) \rightarrow \text{slow-acting processes}$
 - Without myelin the diameter would have to be huge! (50 x larger)

Neuroscience; Exploring the Brain, 3rd Ed, Bear, Connors, and Paradiso Copyright @ 2007 Lippincott Williams & Wilkins

Synaptic Signaling

- AP reaches the synaptic knob
- Voltage-gated Ca2+ channels open
- Ca2+ flows into the synapse from the ECF
- Ca2+ induces exocytosis of vesicles and release of neurotransmitter
- Neurotransmitter diffuses across the synaptic cleft to the post-synaptic neuron and binds to specific receptors
- Binding triggers opening of ion channels
 - Cause permeability changes of different ions
 - Can be
 - excitatory (cations) → depolarization, or
 - inhibitory synapses (anions) → hyperpolarization

Excitatory Synapses

- Open non-specific cation channels
- More Na+ flows into the cell than K+ flows out
- Net result → Excitatory Postsynaptic Potential (a small depolarization)

Inhibitory Synapses

- Different neurotransmitters
- Open either K+ or CI- channels
- K+ efflux or CI- influx → Inhibitory Postsynaptic Potential (a small hyperpolarization)

Usually one EPSP is not enough to trigger an AP

- Membrane is now more excitable
- Synaptic Delay
 - 0.5 to 1 msec
 - Travel through more synapses → ↑Total reaction time

Grand Postsynaptic Potential (GPSP)

- Summation of EPSPs and IPSPs (graded potentials)
- About 50 EPSPs are required to initiate AP
- Temporal Summation
 - EPSPs occurring very close in time can be summed
 - E.g. repeated firing of pre-synaptic neuron because of a persistent input
- Spatial Summation
 - EPSPs from different but adjacent synapses can be summed
- Concurrent EPSPs and IPSPs
 - Cancel each other (more or less) depending on amplitude and location

Post-synaptic Integration

- APs are initiated depending on a combination of inputs
- Neuron is a complex computational device
 - Synapses = inputs
 - Dendrites = processors
 - Axons/APs = output
- Signaling and frequency of APs is a result of integration of information from different sources
- Information not significant enough is not passed at all
- Neurons are linked into complex networks (10¹¹ neurons and 10¹⁴ synapses in the brain alone!)
 - Converging
 - Diverging
 - Massively parallel processing

Arrows indicate direction in which information is being conveyed.

Bioelectricity of a Single Neuron

Response to Current Injection

Hodgin & Huxley

Sir Alan Lloyd Hodgkin and Sir Andrew Huxley

- Described the model in 1952 to explain the ionic mechanisms underlying the initiation and propagation of action potentials in the giant axon of squid.
- The model was proposed long before the channel mechanisms were known clearly.
 - Amazing!
- This work was recognized by the Nobel prize.

Hodgkin

Huxley

The Voltage Clamp Method

• Electronic feedback circuitry to fix membrane potential & measure the required current (or vice versa for current clamp)

Passive membrane properties

Copyright @ 2002, Elsevier Science (USA). All rights reserved.

- Under voltage clamp, the passive response includes:
 - capacitive current, which flows only at the step onset and offset
 - resistive current (through leak channels), also given by Ohm's law (I = V/R)
- Under current clamp, the passive response to current injection is a function of the RC characteristics of the membrane
 - V = IR (Ohm's law) gives the steady state voltage
 - t = RC (gives the kinetics)

Equivalent electrical circuit model

- Unequal distribution of ions and differential resting conductances of those ions
 - Use the Nernst equation
 - Combine with Ohm's law
 - An equivalent circuit model to predict a stable resting membrane potential
 - -75 mV seen in many cells
- This is a steady state and not an equilibrium
 - K+ and Na+ are <u>not</u> at their equilibrium potentials
 - There is a continuous flux of those ions at the resting membrane potential

Resting Membrane Potential

$$E_{m} = \frac{(g_{k}E_{k}) + (g_{Na}E_{Na}) + (g_{Cl}E_{Cl})}{g_{K} + g_{Na} + g_{Cl}}$$

Equivalent electrical circuit model

More complete model

- Provide energy-dependent pump to counter the steady flux of ions
- Add voltage-gated K+ and Na+ channels for electrical signaling
- Add ligand-gated (e.g. synaptic conductances)
- Obviously, much greater complexity could be imagined

 Hodgkin & Huxley used their empirical measures to model Na+ and K+ currents:

$$I_{Na} = m^3 h \, \bar{G}_{Na} \, (V_m - E_{Na}) \qquad \qquad I_K = n^4 \, \bar{G}_K \, (V_m - E_K)$$

 they developed an equation that predicts membrane potential based on the sum of capacitive and ionic currents:

$$I_m = C_m (dV_m/dt) + \bar{G}_K n^4 (V_m - E_K) + \bar{G}_{Na} m^3 h (V_m - E_{Na}) + \bar{G}_L (V_m - E_L)$$

- The n⁴ term provides the pronounced delay in K+ current activation
- The m³ term is the Na+ current activation
 - The smaller exponent on the m term allows for faster Na+ current activation
- The h term is the Na+ current inactivation

Na⁺ and K⁺ conductance in the AP

$$I_m = C_m (dV_m/dt) + \bar{G}_K n^4 (V_m - E_K) + \bar{G}_{Na} m^3 h (V_m - E_{Na}) + \bar{G}_L (V_m - E_L)$$

Question: How much K⁺ flows for the potential to reach equilibrium?

```
Answer: q = CV = (C/A) \times A \times V
```

```
# K<sup>+</sup> ions = q/q<sub>e</sub> = (1 \muF/cm<sup>2</sup>) × 4\pi(10 \mum)<sup>2</sup> × 58 mV / 1.6 × 10<sup>-19</sup> C
= 4.6 × 10<sup>6</sup> ions
```

Tot. K⁺ ions = [K⁺] \times N \times 4/3 π (10 µm)³ = 3 \times 10¹¹ ions

Implication:

- 1. Need to move only a minute fraction of the ions to change V
- 2. Huge amount of energy stored in the ionic gradient (like a battery)

Bioelectricity of the brain

- Measures the brain's electric activity from the scalp
- Measured signal results from the activity of millions of neurons

Measurement System

- 10-20 Lead system is most widely clinically accepted
- Allow localization of diagnostic features in the vicinity of the electrode
- Often a readily available
 wire or rubber mesh is used
- Brain research utilizes even 256 or 512 channel EEG hats

Waveforms

- Several characteristic patterns
- Amplitude: 0.001-0.01 mV
- Bandwidth: 0.5-30 Hz

Typical applications:

- Diagnostics (Epilepsy, Oncology, ..)
- Cognitive Sciences
- Sleep Analysis
- Human Computer Interfaces (BCIs)
- Pharmacology
- Intensive Care, Monitoring

Signal origin

- The EEG measures
 - <u>not</u> action potentials
 - <u>not</u> summation of action potentials
 - but summation of graded Post Synaptic Potentials (PSPs)
 - Create detectable dipoles
- EEG represents mainly the postsynaptic potentials of pyramidal neurons close to the recording electrode.
 - Spatially aligned and perpendicular to the cortical surface.
 - The electrical activity from deeper generators gets dispersed and attenuated by volume conduction effects.
 - Can not solve the "inverse problem"

- Noise and Artifacts:
 - Thermal RF noise
 - Blink artifacts, muscle tension, and similar
 - 50/60 Hz power lines
 - Electrode movement and drifting

●PC3 PC/●

- EEG is a difference in potential between two electrodes
 - If one electrode is "silent", it is called "monopolar" recording. The reference sites: ear lobe, mastoid, nose.
 - used in research, because it enables the researcher to localize the event of interest
 - If two electrodes are "active", it is called "bipolar" recording
 - reduces shared artifacts

^{ig} opca ipc,e

●P5 iP6€

High-quality biopotential measurements require

- Good amplifier design
- Use of good electrodes and their proper placement on the patient
- Good laboratory and clinical practices
- Electrodes should be chosen according to the application
- Basic electrode structure includes:
 - The body and casing
 - Electrode made of high-conductivity material
 - Wire connector
 - Cavity or similar for electrolytic gel
 - Adhesive rim

The complexity of electrode design often neglected

Event-related potentials •

- EEG averaging technique used to study the electrical activity time-locked to an event.
 - Averaging of trials following a stimulus
- Stimulus
 - Optical, auditory, etc
- Advantages
 - Noise reduction
 - The noise decreases by the squareroot of the number of trials
- **Disadvantages**
 - Needs a considerable amount of trials
 - · Far field potentials require up to 1000 measurements
- Comprises a mixture of different brain rhythms, depending on the filters applied.
- Only about 20% of the evoked activity is shown
- Assumption: no habituation occurs (participants don't get used to stimulation)

Example of Auditory Evoked Potentials:

Correct (Baseline): The cats won't eat the food Mary gives them. Semantic mismatch: The cats won't bake the food Mary gives them. Syntactic mismatch: The cats won't eating the food Mary gives them. Semantic and syntactic mismatch: The cats won't baking the food Mary gives them.

The EEG can diagnose sleep disorders and anomalies

Sleep

- An active process
- Sleep deprivation = devastating
 - Body requires REM sleep
- One-third of lives in sleep state
- 5 stages (90-110 minutes)
- Stage 1: Light Sleep
 - Reduction of muscle activity
 - Myoclonus
 - Θ waves
- Stage 2:
 - Eye movement stops
 - θ, κ, spindles
- Stage 3&4: Deep Sleep, non REM
 - No muscle activity
 - Hard to wake up \rightarrow disorientations
 - Nightmares, sleep walking, bedwetting.
- Stage 5: REM
 - Paralysis
 - Rapid eye movement
 - Increased BP, erection, dreaming
 - Affected by caffeine

Neuroscience: Exploring the Brain, 3rd Ed, Bear, Connors, and Paradiso Copyright @ 2007 Lippincott Williams & Wilkins

• Epilepsy

- Repeated seizures
- Causes: Tumour, trauma, infection, vascular disease, many cases unknown
- Types:
 - Generalized: Entire cerebral cortex, complete behaviour disruption, consciousness loss
 - Partial: Circumscribed cortex area, abnormal sensation or aura
 - Absence: Less than 30 sec of generalized, 3 Hz EEG waves

• EEG of Epilepsy

- Between seizures
 - Rarely any spikes
- During a seizure
 - Characteristic, large, rhythmic, waves
- Diagnostic of epilepsy when a seizure is observed
 - 24 hr or overnight monitoring

Intracortical EEG

- Measure the activity of the grey matter directly
 - Platinum electrodes inserted into the brain below the scalp
- Disadvantages
 - Invasive!

Advantages

- Much more sensitive
- Less artifacts
- Can detect signals which do not appear in standard EEG

• Uses

- Monitoring of critically ill patients
- BCl's

Electroretinogram (ERG)

- A recording of the temporal sequence of changes in potential in the retina when stimulated with a brief flash of light.
- Electrodes
 - A transparent contact lens contains one electrode
 - The reference electrode can be placed on the right temple

Electroretinogram (ERG)

a-wave ("late receptor potential")

 Reflects the general physiological health of the photoreceptors in the outer retina

b-wave

- Reflects the health of the inner layers of the retina
- Two other waveforms
 - Sometimes recorded in the clinic
 - c-wave
 - originating in the pigment epithelium
 - d-wave
 - indicating activity of the bipolar cells

Nerve Conduction Studies

- Extracellular field response from the sensory nerves of peripheral nerves
 - Excite at one or more point and measure potentials distally
 - For each stimulation site measure latency, amplitude, duration, and area.
 - A motor conduction velocity can be calculated.
- Detect loss of axons (as in a typical axonal neuropathy), conduction block from demyelination, etc.

Electromyogram (EMG)

- Muscle is an excitable tissue
 - More to come later
- Electromyogram (EMG) is a technique for evaluating and recording the activation signal of muscles.
 - Detects the electrical potential generated by muscle cells when these cells contract and relax.
- Electrical Characteristics
 - Measured EMG potentials range between < 50 µV up to 20 to 30 mV, depending on the muscle under observation.
 - Typical repetition rate of muscle unit firing is about 7-20 Hz.

Electromyogram (EMG)

- Electrical potential difference measured between two points → bipolar electrode configuration used
- Bipolar Electrode Types
 - Intramuscular
 - Fine Wire
 - Needle
 - Extramuscular (Surface)
 - Most common, less invasive
 - Silver-silver chloride electrodes

Electrode Placement

- Overlying the muscle of interest in the direction of predominant fiber direction
- Subject is GROUNDED by placing an electrode in an inactive region of body

Electromyogram (EMG)

• What can be learned from an EMG?

- Time course of muscle contraction
- Contraction force
- Coordination of several muscles in a movement sequence
 - These parameters are DERIVED from the amplitude, frequency, and change of these over time of the EMG signal

Applications

- Rehabilitation
- Functional analysis
- Active Prosthetics
- Biomechanics, Sports
 medicine

Electro-Oculogram (EOG)

Recording of the eye movement.

- Two electrodes to the left and the right of the eye or above and below the eye
- Measure the potential between
 the two electrode
- Determine the horizontal or vertical movement of the eye
- The potential is zero when the gaze is straight ahead.

Applications

- Diagnostics
- Functional analysis
- Sleep and dream research
- Evaluating reading ability and visual fatigue

Augenbewegung Links

Augenbewegung Rechts

EOG recording of a normal person

Electrocardiogram (ECG)

After we learn more about the heart

Summary bioelectric signals

	Frequency	Amplitude (mV
ECG	0,2 - 300	0,1 - 3
EEG	DC – 100	0,005 - 0,2
EEG (cortical)	10 – 100	0,015 - 0,3
EMG	10 – 1000	0,1 - 5
EMG (needle)	10 – 10000	0,05 - 5
EOG	0 – 30	0,1 - 2
Intracell.	0 – 10000	50 - 130