

Reflectance and Diffuse Spectroscopy

Spectroscopy

- What is it ? from the Greek:
 - spectro = color + scope = look at or observe
 = measuring/recording the colors of light
- What can we learn from it?
 - Energy levels of atoms and molecules
 - Fundamental processes
 - The molecular constituents in tissues
- When you measure how much of each color there is, you're measuring a "spectrum."

Newton's prism

Dispersion with a Prism

• n=n(λ)

Figure 3.40 The wavelength dependence of the index of refraction for various materials.

Dispersion with a Prism

multiple-order overlap not a problem
 only one order!

• Disadvantages:

- high resolving power not possible
- resolving power/resolution can vary strongly with $\boldsymbol{\lambda}$

Rainbows

What causes rainbows?

- Diffraction by rain drops
- Angle between incident and diffracted rays
 - 42 degrees for red
 - 40 degrees for violet.
- Form a circular rim of color in the sky → a rainbow!

Secondary rainbows

- Double reflection of sunlight inside the raindrops
- Appear at an angle of 50–53 degrees
- The droplets have to be the right size to get two reflections to work
- Higher order rainbows are possible

Dispersion with a Grating

Diffraction grating

 An optical unit that separates polychromatic light into constant monochromatic composition.

Dispersion with a Grating

Multi-slit arrangement

- Uses diffraction to separate light wavelengths with high resolution and high intensity.
- The resolving power is achieved by interference of light.

Dispersion with a Grating

Diffraction

$$\frac{m\lambda}{\Lambda} = \sin(a) + \sin(b)$$

- Littrow's angle (α=β)
 - $\frac{m\lambda}{2\Lambda} = \sin(a)$
- Resolving Power

$$R = \frac{\lambda_o}{\delta \lambda} = mN_{lines} = \frac{mD_a}{\Lambda}$$

Spectral Resolution

$$\delta \lambda = \frac{\lambda_o \Lambda}{m D_a}$$

- Efficiency drops with Λ and m

- m: the diffraction order (an integer),
- λ : the wavelength
- $\Lambda = 1/d$ is the period of grooves
- α: incident angle
- β: diffracted angle
- D_a: aperture diameter (i.e. diameter of grating illuminated)

Anatomy of a grating spectrometer

• Spectrometer

- Device to obtain spectrum of light
- Usually grating

• Width of slit determines:

- Resolving power (w ↓, R↑)
- Throughput → SNR (w ↓
 , I ↓)
- Hence there is always a tradeoff between throughput and spectral information

Reflectance Spectroscopy

Measures

Changes to source spectrum

Effects of

- Elastic Scattering
 - Mie and Rayleigh
- Absorption
 - Many absorbers in tissue

Instrumentation

- Single point
- Imaging
 - Many collection fibers → imaging spectrograph
 - Limited spatial resolution
 - Camera with variable filter
 - Limited spectral resolution

Applications

• E.g. pulse oximeter

Reflectance Spectroscopy

$$\begin{split} I(\rho) &= I_0 \! \left[\frac{1}{{\mu_t}'} \! \left(\mu_{\text{eff}} + \frac{1}{r_1} \right) \frac{\exp(-\mu_{\text{eff}} r_1)}{{r_1}^2} \\ &+ \left(\frac{1}{{\mu_t}'} + 2z_b \right) \! \left(\mu_{\text{eff}} + \frac{1}{r_2} \! \right) \! \frac{\exp(-\mu_{\text{eff}} r_2)}{{r_1}^2} \right], \end{split}$$

where

$$egin{aligned} r_1 &= \left[\left(rac{1}{\mu_t{'}}
ight)^2 +
ho^2
ight]^{1/2}, & r_2 &= \left[\left(rac{1}{\mu_t{'}} + 2 z_b
ight)^2 2 +
ho^2
ight]^{1/2} \ \mu_{ ext{eff}} &= \sqrt{rac{\mu_a}{D}}, \ \mu_t{'}^\prime &= \mu_a + \mu_s{'} ext{ and } z_b = 2AD, \end{aligned}$$

 $(D=1/\mu t')$ and A relates to internal reflection.)

Mourant, etc., and Bigio, Appl. Optics 36, No.4, p.949 (1997)

The Pulse Oximeter

- Function: Measure arterial blood saturation
- Advantages:
 - Non-invasive
 - Highly portable
 - Continuous monitoring
 - Cheap
 - Reliable

The Pulse Oximeter

• How:

- Illuminate tissue at 2 wavelengths
- straddling isosbestic point (eg. 650
- and 805 nm)
 - Isosbestic point: wavelength → where Hb and HbO2 spectra cross.
- Detect signal transmitted through finger
- Isolate varying signal due to pulsatile flow (arterial blood)
- Assume detected signal is proportional to absorption coefficient
 - Get the two μ_a
 - Calculate the concentrations (Two measurements, two unknowns)
- Calibrate instrument by correlating detected signal to arterial saturation measurements from blood samples

 $\mu_a^{\lambda_2} = \ln 10 * \left\{ \varepsilon_{HbO_2}^{\lambda_2} \left[HbO_2 \right] + \varepsilon_{Hb}^{\lambda_2} \left[Hb \right] \right\}$

Arterial O₂ saturation =
$$\frac{[HbO_2]}{[HbO_2 + Hb]}$$
*100%

 $\boldsymbol{\epsilon}$ is the extinction coefficient

15

The Pulse Oximeter

• Limitations:

- Reliable when O₂ saturation above 70%
- Not very reliable when flow slows down
- Can be affected by motion artifacts and room light variations
- Doesn't provide tissue oxygenation levels

16

Turbid Media

- How can we image objects embedded in turbid media?
 - Cheat !!
- Try to devise a method to detect only the photons that have not scattered
 - Generating a direct shadow image (like an x-ray).
- Possible methods
 - Collimated Illumination
 - Use of polarizers
 - Detect "snake" photons

Turbid Media

Collimated illumination and detection

Turbid Media

- The earliest arriving photons have traveled the straightest path
 - Can we select only the earliest photons?

Time gating methods

- Streak camera
- Time-to amplitude converters
- Coherence gates
- Nonlinear optical gates
 - Kerr gate
 - Second harmonic generation
 - Raman amplification

19

Turbid Media

 Beer's law can also tell us how many photons remain unscattered after a given distance in tissue:

L

$$I_U = I_0 e^{-\mu'_s}$$

- A typical value for many tissues: μ_s' ~ 10 cm⁻¹
- ⇒ for optical mammography there are very few unscattered photons

Turbid Media

How can we image with diffuse light?

- The "forward" problem
 - Asks: if we know the light going in, and we know what the hidden object is, can we calculate what reaches the surface in different locations?
- The "inverse" problem
 - Asks: if we know the light going in, and we measure the light coming out at various locations, what can we say about the hidden object?

Methods

- Monte Carlo
- Diffusion Approxiamtion
- Time Domain vs. Frequency domain

How do we solve an inverse problem?

- Sometimes done as an iteration of forward calculations:
 - 1. Must make assumptions about the optical properties of the surrounding tissue
 - 2. Make an initial "guess" about the location, size and optical properties of the lesion.
 - 3. Do a forward propagation calculation and see how those results compare with the measurements.
 - 4. Re-estimate the properties of the lesion based on the difference, and recalculate the forward problem.
 - 5. Repeat many times!!!

 Year discovered: ~1988 **Near-infrared light** Form of radiation: (non-ionizing) Energy/wavelength of radiation: ~1 eV / 600–1000 nm Imaging principle: Interaction (absorption, elastic scattering) of light w/ tissue ~10³ cm³ Imaging volume: Low (~1cm) Resolution: • Applications: Perfusion, functional imaging

Superficial Similarities

- Generation: x-ray tube
- Detection: Detector arrays (ion.-chambers, scint. + photodiode)
- Computer reconstruction of 2D slices/ 3D volumetric images

Essential Differences

• No scattering!

• Principles of DOT

- Scattering dominated
- Limited penetration depth (~cm), low res. (mm-cm)
- Economic, functional (hemodynamics)

DOT Applications - Breast

Atomic spectroscopy

Atomic spectroscopy

- Not very relevant to medical applications.
 - Flames, electrical discharges (especially in gases)
- However, one method may prove useful → Laser-induced breakdown spectroscopy (LIBS)
- Laser-induced breakdown spectroscopy (LIBS)
 - Atomic emission spectroscopy
 - Highly energetic laser pulse focused to form a plasma
 - Emit light of characteristic frequencies
 - LIBS at surface of skin could be used to sense heavy metal contamination

