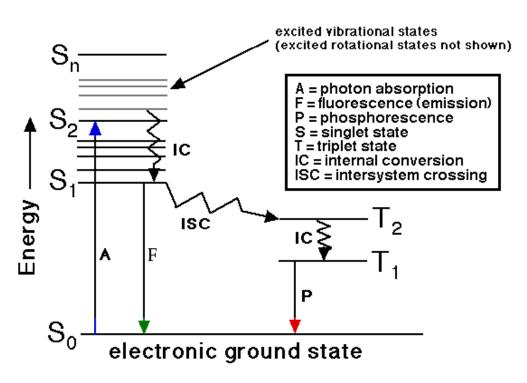


Fluorescence Spectroscopy

- Emission of photons from electronically excited states
- Two types of luminescence:
 - Relaxation from singlet excited state
 - Relaxation from triplet excited state
- Singlet and triplet states
 - Ground state two electrons per orbital; electrons have opposite spin and are paired
 - Singlet excited state
 - Electron in higher energy orbital has the opposite spin orientation relative to electron in the lower orbital
 - Triplet excited state
 - The excited valence electron may spontaneously reverse its spin (spin flip). This process is called intersystem crossing. Electrons in both orbitals now have same spin orientation



Types of emission

- Fluorescence
 - return from excited singlet state to ground state; does not require change in spin orientation (more common of relaxation)
- Phosphoresence
 - return from a triplet excited state to a ground state; electron requires change in spin orientation
- Emissive rates of fluorescence are several orders of magnitude faster than that of phosphorescence

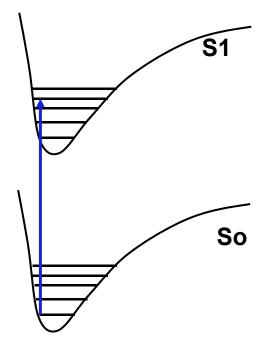
Energy level diagram (Jablonski diagram)

Population of energy levels

• The ratio of molecules in upper and lower states

$$\frac{n_{upper}}{n_{lower}} = \exp\left(-\frac{\Delta E}{kT}\right)$$

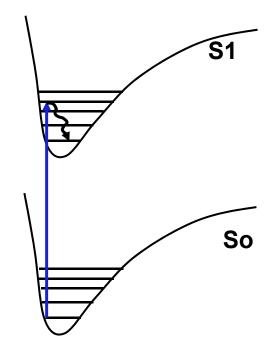
k=1.38*10⁻²³ JK⁻¹ (Boltzmann's constant) ΔE = separation in energy level


Excitation

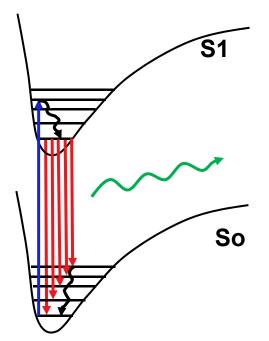
- Light is absorbed; for dilute sample, Beer-Lambert law applies
 - Magnitude of $\boldsymbol{\epsilon}$ reflects probability of absorption
 - Wavelength of ε dependence corresponds to absorption spectrum

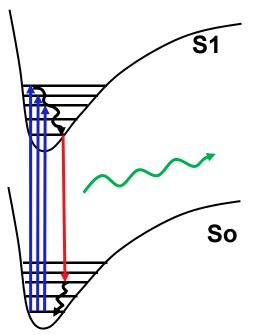
 $A = \varepsilon(\lambda)Cl$

 ϵ = molar absorption coefficient (M⁻¹ cm⁻¹) C = concentration, I = pathlength


- Franck-Condon principle
 - The absorption process takes place on a time scale (10⁻¹⁵ s) much faster than that of molecular vibration

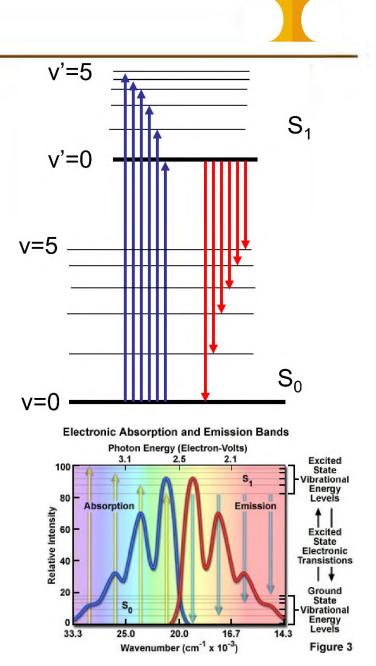
Non-radiative relaxation


- The electron is promoted to higher vibrational level in S1 state than the vibrational level it was in at the ground state
- Vibrational deactivation takes place through intermolecular collisions
 - A time scale of 10⁻¹² s (faster than that of fluorescence process)

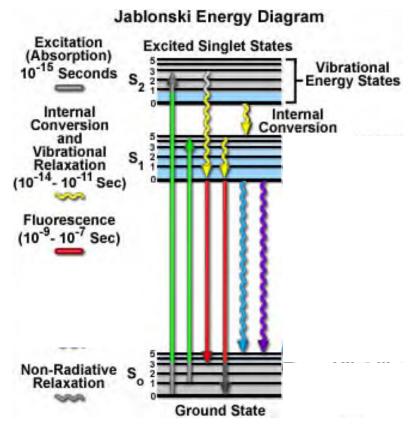

• Emission

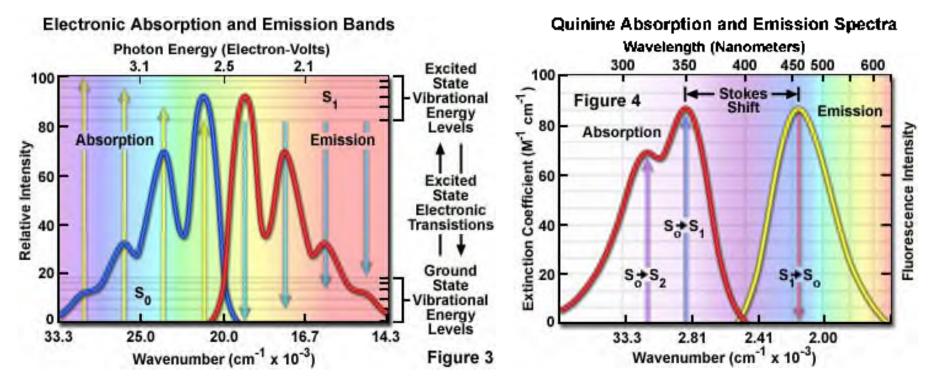
- The molecule relaxes from the lowest vibrational energy level of the excited state to a vibrational energy level of the ground state (10⁻⁹ s)
- The energy of the emitted photon is lower than that of the incident photons
- Emission Spectrum
 - For a given excitation wavelength, the emission transition is distributed among different vibrational energy levels
 - For a single excitation wavelength, can measure a fluorescence emission spectrum

Emission

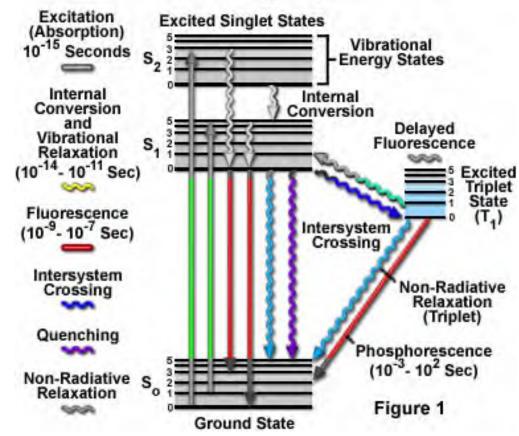

- Stokes shift
 - Fluorescence light is red-shifted (longer wavelength than the excitation light) relative to the absorbed light
 - Internal conversion can affect Stokes shift
 - Solvent effects and excited state reactions can also affect the magnitude of the Stokes shift
- Invariance of emission wavelength with excitation wavelength
 - Emission wavelength only depends on relaxation back to lowest vibrational level of S1
 - For a molecule, the same fluorescence emission wavelength is observed irrespective of the excitation wavelength

Mirror image rule


- Vibrational levels in the excited states and ground states are similar
- An absorption spectrum reflects the vibrational levels of the electronically excited state
- An emission spectrum reflects the vibrational levels of the electronic ground state
- Fluorescence emission spectrum is mirror image of absorption spectrum


Internal conversion vs. fluorescence emission

- Electronic energy increases --> the energy levels grow more closely spaced
 - Overlap between the high vibrational energy levels of S_{n-1} and low vibrational energy levels of S_n more likely
 - This overlap makes transition between states highly probable
- Internal conversion: a transition between states of the same multiplicity
 - Time scale of 10⁻¹² s (faster than that of fluorescence process)
- Significantly large energy gap between S₁ and S₀
 - S₁ lifetime is longer → radiative emission can compete effectively with nonradiative emission


- Internal conversion vs. fluorescence emission
 - Mirror-image rule typically applies when only S₀ → S₁ excitation takes place
 - Deviations from the mirror-image rule are observed when $S_0 \rightarrow S_2$ or transitions to even higher excited states also take place

Intersystem crossing

- Intersystem crossing refers to non-radiative transition between states of different multiplicity
- It occurs via inversion of the spin of the excited electron resulting in two unpaired electrons with the same spin orientation, resulting in a triplet state
- Transitions between states of different multiplicity are formally forbidden
- Spin-orbit and vibronic coupling mechanisms decrease the "pure" character of the initial and final states, making intersystem crossing probable
- T1 → S0 transition is also forbidden → T1 lifetime significantly larger than S1 lifetime (10-3-102 s)

Jablonski Energy Diagram

• Quantum yield of fluorescence, Φ_f , is defined as:

 $\Phi_f = \frac{\text{number of photons emitted}}{\text{number of photons absorbed}}$

 ${\boldsymbol{\cdot}}$ Another definition for $\Phi_{\rm f}$ is

$$\Phi_f = \frac{k_r}{\sum k}$$

• where $k_{\rm r}$ is the radiative rate constant and Σk is the sum of the rate constants for all processes that depopulate the S₁ state.

• In the absence of competing pathways $\Phi_f=1$

- Characteristics of quantum yield
 - Quantum yield of fluorescence depends on biological environment
 - Example: Fura 2 excitation spectrum and Indo-1 emission spectrum and quantum yield change when bound to Ca²⁺

- Radiative lifetime, τ_r, is related to k_r
- The observed fluorescence lifetime, is the average time the molecule spends in the excited state, and it is

$$\tau_f = \frac{1}{\sum k}$$

 ${\mathcal{T}}_r$

Characteristics of life-time

- Provide an additional dimension of information missing in time-integrated steady-state spectral measurements
- Sensitive to biochemical microenvironment, including local pH, oxygenation and binding
- Lifetimes unaffected by variations in excitation intensity, concentration or sources of optical loss
- Compatible with clinical measurements in vivo

Fluorescence life-time methods

- Short pulse excitation followed by an interval during which the resulting fluorescence is measured as a function of time
- Provide an additional dimension of information missing in time-integrated steady-state spectral measurements
- Sensitive to biochemical microenvironment, including local pH, oxygenation and binding
- Lifetimes unaffected by variations in excitation intensity, concentration or sources of optical loss
- Compatible with clinical measurements in vivo

Fluorescence Intensity

Absorbed intensity for a dilute solution

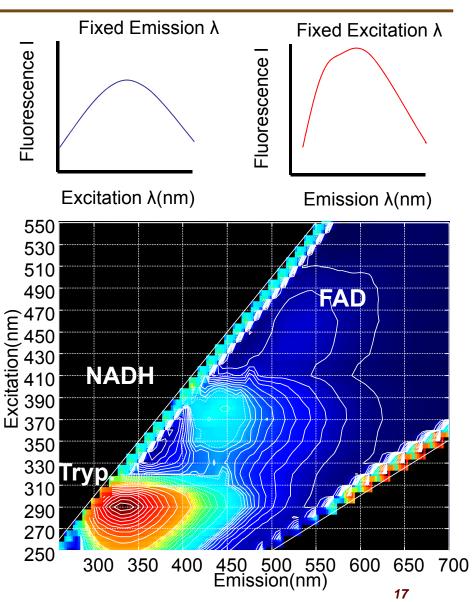
- Very small absorbance
- From the Beer-Lambert law

$$F\left(\lambda_{x},\lambda_{m}\right) = I_{A}\Phi(\lambda_{m})Z = \left[2.303I_{o}\varepsilon\left(\lambda_{x}\right)CL\right]\Phi(\lambda_{m})Z$$

- where,
 - Z instrumental factor (collection angle)
 - I_o incident light intensity
 - ϵ molar extinction coefficient
 - Φ quantum yield
 - C concentration
 - L path length

Fluorescence Intensity

Emission spectrum


- Hold excitation wavelength fixed, scan emission
- Reports on the fluorescence spectral profile
- reflects fluorescence quantum yield, $\Phi_k(I_m)$

Excitation spectrum

- Hold emission wavelength fixed, scan excitation
- Reports on absorption structure
- reflects molar extinction coefficient, $\epsilon(I_x)$

• Excitation-Emission Matrix (EEM)

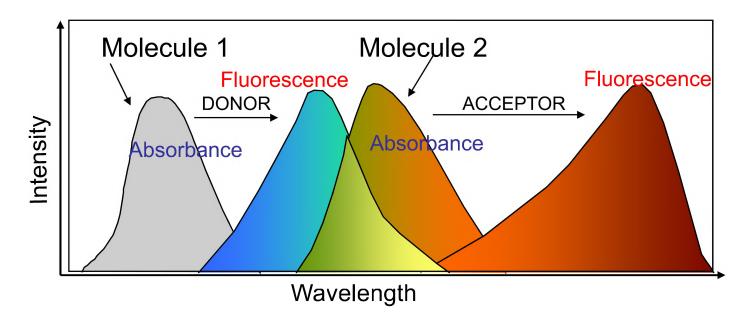
- Composite
- Good representation of multifluorophore solution

Quenching

- Excited molecules relax to ground states via nonradiative pathways avoiding fluorescence emission (vibration, collision, intersystem crossing)
- Molecular oxygen quenches by increasing the probability of intersystem crossing
- Polar solvents such as water generally quench fluorescence by orienting around the exited state dipoles

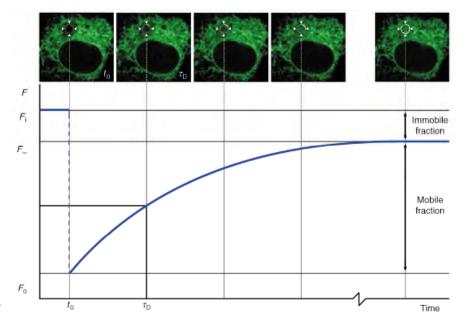
Photobleaching

- Defined as the irreversible destruction of an excited fluorophore
- Photobleaching is not a big problem as long as the time window for excitation is very short (a few hundred microseconds)


Excitation Saturation

- The rate of emission is dependent upon the time the molecule remains within the excitation state (the excited state lifetime f)
- Optical saturation occurs when the rate of excitation exceeds the reciprocal of f
- Molecules that remain in the excitation beam for extended periods have higher probability of interstate crossings and thus phosphorescence

Fluorescence Resonance Energy Transfer (FRET)


- Non radiative energy transfer a quantum mechanical process of resonance between transition dipoles
 - Effective between 10-100 Å only
 - Emission and excitation spectrum must significantly overlap
 - Donor transfers non-radiatively to the acceptor
 - FRET is very sensitive to the distance between donor an acceptor and is therefore an extremely useful tool for studying molecular dynamics

Fluorescence Recovery after Photobleaching (FRAP)

- Useful technique for studying transport properties within a cell, especially transmembrane protein diffusion
 - FRAP can be used to estimate the rate of diffusion, and the fraction of molecules that are mobile/immobile
 - Can also be used to distinguish between active transport and diffusion
- Procedure
 - Label the molecule with a fluorophore
 - Bleach (destroy) the fluorophore is a well defined area with a high intensity laser
 - Use a weaker beam to examine the recovery of fluorescence as a function of time

Nature Cell Biology 3, E145 - E147 (2001)

Biological Fluorophores

Endogenous Fluorophores

- amino acids
- structural proteins
- enzymes and co-enzymes
- vitamins
- lipids
- porphyrins

• Exogenous Fluorophores

- Cyanine dyes
- Photosensitizers
- Molecular markers GFP, etc.

Endogenous	Excitation	Emission	
fluorophores	maxima (nm)	maxima (nm)	
Amino acids			
Tryptophan	280	350	
Tyrosine	275	300	
Phenylalanine	260	280	
Structural proteins			
Collagen	325	400, 405	
Elastin	290, 325	340, 400	
Enzymes and coenzymes			
FAD, flavins	450	535	
NADH	290, 351	440, 460	
NADPH	336	464	
Vitamins			
Vitamin A	327	510	
Vitamin K	335	480	
Vitamin D	390	480	
Vitamin B ₆ compounds			
Pyridoxine	332, 340	400	
Pyridoxamine	335	400	
Pyridoxal	330	385	
Pyridoxic acid	315	425	
Pyridoxal 5'-phosphate	330	400	
Vitamin B ₁₂	275	305	
Lipids			
Phospholipids	436	540, 560	
Lipofuscin	340-395	540, 430-460	
Ceroid	340-395	430-460, 540	
Porphyrins	400-450	630, 690	

FAD, flavin adenine dinucleotide; NADH, reduced nicotinamide adenine dinucleotide; AND(P)H, reduced nicotinamide adenine dinucleotide phosphate.

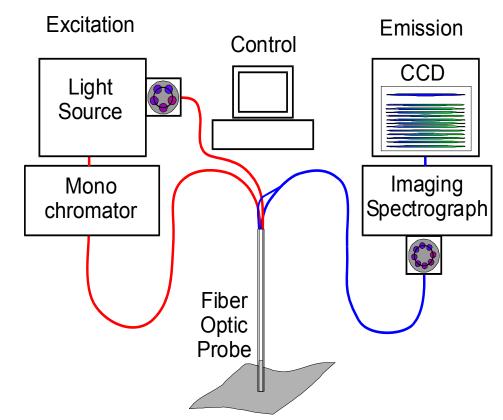
Biological Fluorophores

TABLE III. Measured fluorescence lifetimes and amplitudes for endogenous biological fluorophores *in vitro* (337.1 nm excitation), with comparison to literature values.

Fluorophore <5×10 ⁻⁶ M in PBS	Measured			Literature					
	Lifetime (ns)		Area		Lifetime (ns)		Area		
	$ au_1$	$ au_2$	A_1	A ₂	$ au_1$	$ au_2$	<i>A</i> ₁	<i>A</i> ₂	References
Tryptophan	0.54	4.45	0.33	0.66	0.62	3.20	0.22	0.78	58
					0.53	3.10	0.33	0.67	37
					1.47	2.78	0.72	0.28	55
Elastin 1.63 7.3	7.36	0.36	0.64	1.7	8.3			57	
					1.3	5.8			57
					1.4	6.7	0.58	0.42	55
					1.12	6.57	0.27	0.73	28
FAD	2.63				2.3				33
					2.85				28
NADH (free)	0.36				0.3				36
					0.26	0.66			59
					0.24	0.58	0.77	0.23	55
					0.4				33
					0.38	1.38	0.97	0.03	28

Fluorescence Instrumentation

- Fluorescence is a highly sensitive method (can measure analyte concentration of 10⁻⁸ M)
- Important to minimize interference from:
 - Background fluorescence from solvents
 - Light leaks in the instrument
 - Stray light scattered by turbid solutions
- Instruments do not yield ideal spectra:
 - Non-uniform spectral output of light source
 - Wavelength dependent efficiency of detector and optical elemens



Fluorescence Instrumentation

Major components for fluorescence instrument

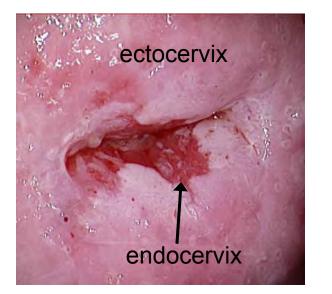
- Illumination source
 - Broadband (Xe lamp)
 - Monochromatic (LED, laser)
- Light delivery to sample
 - Lenses/mirrors
 - Optical fibers
- Wavelength separation (potentially for both excitation and emission)
 - Filters
 - Monochromator
 - Spectrograph
- Detector
 - PMT
 - CCD camera

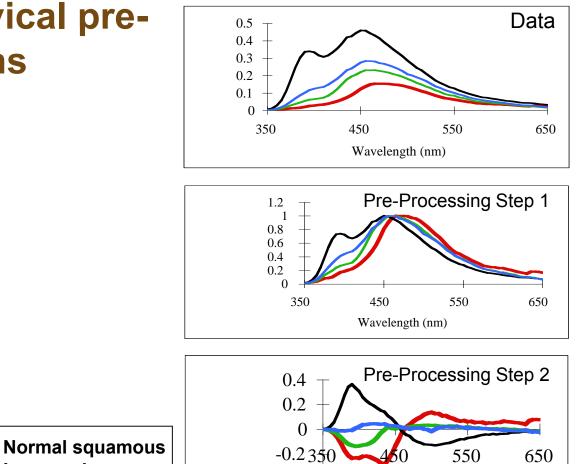
Test definitions

	Has disease	Does not have disease	
Tests positive	(A)	(B)	(A+B)
	True positive	False positive	Total # who test positive
Tests negative	(C)	(D)	(C+D)
	False negative	True negative	Total # who test negative
	(A+C)	(B+D)	
	Total # who have disease	Total # who do not have disease	

Sensitivity=A/(A+C)	Positive predictive value=A/(A+B)
Specificity=D/(B+D)	Negative predictive value=D/(C+D)

Wavelength (nm)


Applications


Detection of cervical precancerous lesions

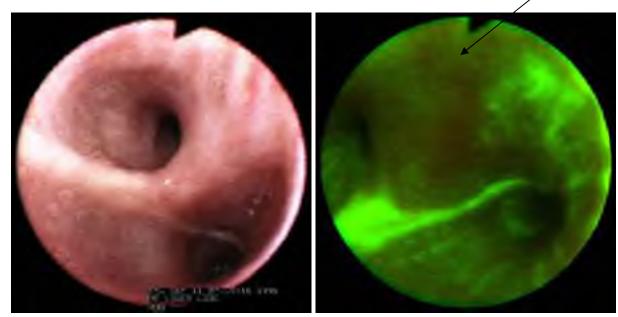
Low-grade

High-grade

Normal columnar

-0.4 $^{\perp}$

Detection of cervical precancerous lesions


	SILs vs. N	ON SILs	HG SIL vs. Non HG SIL		
Classification	Sensitivity	Specificity	Sensitivity	Specificity	
Pap Smear Screening	62% ± 23	68% ± 21	N/A	N/A	
Colposcopy in Expert Hands	94%±6	48%±23	79%±23	76%±13	
Full Parameter Composite Algorithm	82%±1.4	68%±0.0	79% ± 2	78%±6	
Reduced-Parameter Composite Algorithm	84%±1.5	65%±2	78%±0.7	74% ± 2	

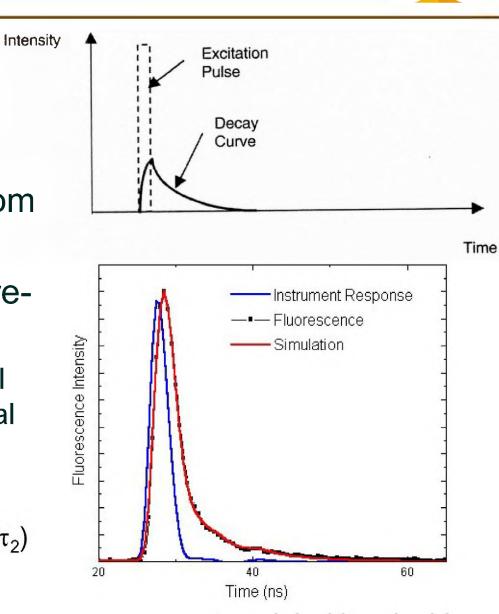
Detection of lung carcinoma in situ using the LIFE imaging system

Carcinoma in situ

White light bronchoscopy

Autofluorescence ratio image

Courtesy of Xillix Technologies (www.xillix.com)



- Detection of lung carcinoma in situ using the LIFE imaging system
 - Autofluorescence enhances ability to localize small neoplastic lesions

	Severe dys	plasia/Worse	Intraepithelial Neoplasia		
	WLB	WLB+LIFE	WLB	WLB+LIFE	
Sensitivity	0.25	0.67	0.09	0.56	
Positive predictive value	0.39	0.33	0.14	0.23	
Negative predictive value	0.83	0.89	0.84	0.89	
False positive rate	0.10	0.34	0.10	0.34	
Relative sensitivity	2.	.71	6.3		

M.-A. Mycek et al. GI Endoscopy 48:390-4, 1998

Fluorescence lifetime measurements

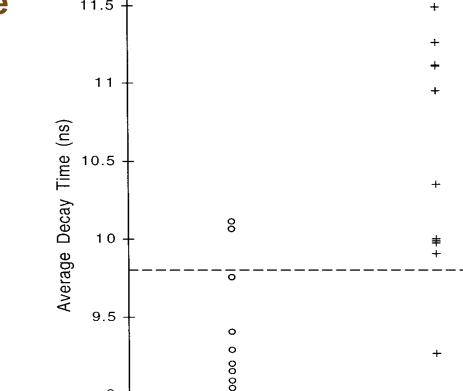
- Autofluorescence lifetimes measured from colon tissue in vivo
- Analysis via iterative reconvolution
 - Two component model with double exponential decay

 $\mathsf{F}(\mathsf{t}) = \alpha_1 \mathsf{exp}(-\mathsf{t}/\tau_1) + \alpha_2 \mathsf{exp}(-\mathsf{t}/\tau_2)$

Applications

Applications

- Fluorescence lifetime measurements
 - Autofluorescence lifetimes used to distinguish adenomatous from non-adenomatous polyps in vivo


$$\tau_1 = 6.03 \text{ ns}$$
 $\tau_2 = 0.72 \text{ ns}$

Area1 = 0.42 Area2 = 0.58

11.5 +11

9

8.5

8 8

Adenomatous

Non-Adenomatous