

Introduction to Electrical Power Engineering

C. A. Charalambous, Associate Professor

September 2020

About the Lab

arent to Large PV Systems Fault Detection

Elaboration of a Novel Conce

alation of DC Traction Systems' Stra Current Levels

- The PSM Lab (est. 2013) operates under the auspices of the Department of ECE of the University of Cyprus.
- ➤ Research/Industrial Funding to date: 2 Million Euros
- > Over 100 peer reviewed papers in top quality journal and international conferences
- Representation at the International Standardisation Committee, ISO/TC 67/SC 2/WG 24 for the development of the Technical Standard 21857 "Petroleum, Petrochemical and natural gas industries.

International Organization for Standardization

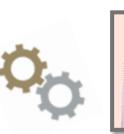
Lab Members & **Research Interests**

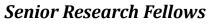
PSM Lab EMI, Earthing & Corrosion

Senior Research Fellows

Dr. Antonis Lazari Dr. Alexandros Nikolaidis

PSM Lab


EMI, Earthing & Corrosion



Leader

Dr. Andreas Demetriou

Dr. Christos Melios

Other Lab members					
Mr Andreas Pallis	PhD candidate				
Mr Fivos Therapontos	PhD candidate				
Mr Nikos Kelliris	PhD candidate				
Mr Michalis Yerou	Research Assistant				
Mr Marios Grafanakis	Final Year UG student				

University of Cyprus

- Electrical control and analysis of DC/AC interference from power system \geq applications
- Engineering cost & benefit analysis and risk management \geq
- Earthing/ lightning protection railways, oil & gas pipelines, RES \geq applications and LV systems
- Loss evaluation in distribution (MV/LV) power systems \succ
- Insulation coordination in AC/DC micro-grids \geq
- Power system plant and operation \geq

Definition of Electrical Power

Definition:

- The rate at which the work is being done in an electrical circuit is called an electric power.
- The electric power is defined as the rate of the transferred of energy.
- The electric power is produced by the generator and can also be supplied by the electrical batteries.
- It can be carried over long distances
- It is converted into various other forms of energy like motion, heat energy.

	Work done in an electrical current		
Electrical Power =	time		
P =	$\frac{VIt}{t} = VI = IR^2 = \frac{V^2}{R}$		

V = 1 volts and $I = 1$ ampered	2
P = 1 watt	

Electrical Power vs Electrical Energy

Watts to kilowatt-hour calculation formula

The energy E in kilowatt-hour (kWh) is equal to the power P in watts (W), times the time period t in hours (hr) divided by 1000:

$$E_{(kWh)} = P_{(W)} \times t_{(hr)} / 1000$$

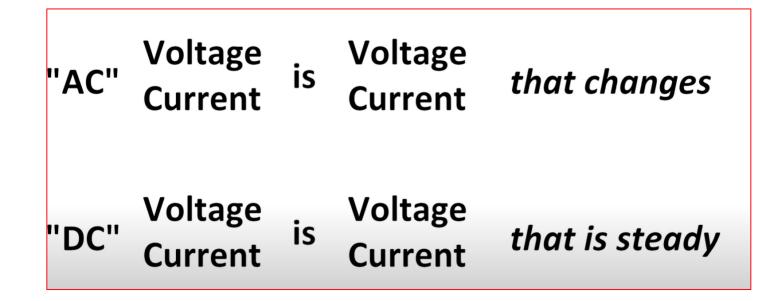
```
kilowatt-hour = watt \times hour / 1000
```

or

$kWh = W \times$	hr / 1000
------------------	-----------

Example

What is the energy consumption in watt-hour when the power consumption is 5000 watts for time duration of 3 hours?


 $E = 5000 \text{W} \times 3 \text{h} / 1000 = 15 \text{ kWh}$

Electri	Ηλεκτρισμού Κύ city Authority of C c.com.cy			(1800 Fault report/tree pruning/stree applications (1818 Bill information	et lighting Page
55 Ayios Andreas S VAT Tax Point VAT Registration N	Str., 3036 Limass 31/(o. 900	01/2019 000020C		SUPPLY ADDRESS XXXXXXXXXXXX XXXXXXXXXXX	
TIC		01266G			1
Customer Name	XXXXXXXXXX				
Account Number	XXX XXX XX	XX X		XXXXXXXXXXXX	
Meter Number/s	XXXXXXX			XXXXXXXXXXXX	
Premise Id	XXXXXXXXX			XXXXXXXXXXXX	
Load Ent./Fuse Tariff/s	3000 KVA 3-P 40-Medium Vo				
Cycle: 55	Route: LIM	116			
METER READINGS (ANALYSIS FOR THE PERIOD 31/12/2018 - 31/01/2019	Totals (€)
Tariff Present	Previous	MF	Consumption	Charges of Tariff 40	
40 PW 1566.73 40 OW 3767.20 40 PN 285.45 40 ON 969.26 Total consumptior Same period last ye		532.50 an 496.3		PW:Peak Weekdays {136.070kWh x €0,0902} OW:Off-Peak Weekdays {310.180kWh x €0,0771} N:Peak Weekends&Holidays {20.230kWh x €0,0768} ON:Off-Peak Weekends&Holidays{66.020kWhx€0,0736} -Network Usage -Ancillary Services -Meter Reading Electricity Supply	12.273,5 23.914,8 1.755,9 4.859,0 10.064,2 3.301,5 0,4 2,3
				Electricity Supply	2,0
				Total Basic Price Special Tariff Discount {532.500kWh x €0,0048-} Fuel Adjustment (532.500kWh x €0,033613} Public Service Obligations {532.500kWh x €0,00083}	56.172,0 -2.556,0 17.898,9 441,9
	JMPTION PER PEI	RIOD		Total Basic Price Special Tariff Discount {532.500kWh x €0,0048-} Fuel Adjustment {532.500kWh x €0,033613}	56.172,0 -2.556,0 17.898,9
600000	JMPTION PER PEI	RIOD		Total Basic Price Special Tariff Discount (532.500kWh x €0,0048-} Fuel Adjustment (532.500kWh x €0,033613} Public Service Obligations (532.500kWh x €0,00083) - Total subject to VAT {19%}	56.172,0 -2.556,0 17.898,9 441,9 71.956,9
600000 400000	3340	RIOD 532500		Total Basic Price Special Tariff Discount {532.500kWh x €0,0048-} Fuel Adjustment (532.500kWh x €0,033613} Public Service Obligations {532.500kWh x €0,00083} Total subject to VAT {19%} RES & ES Fund {532.500kWh x €0,01} Total charges for the period before VAT	56.172,0 -2.556,0 17.898,9 441,9 71.956,9 5.325,0 77.281,9
\$00000 \$00000 \$200000 \$496	3340			Total Basic Price Special Tariff Discount {532.500kWh x €0,0048-} Fuel Adjustment {532.500kWh x €0,03813} Public Service Obligations {532.500kWh x €0,00083} Total subject to VAT {19%} RES & ES Fund {532.500kWh x €0,01} Total charges for the period before VAT VAT {19%}	56.172,0 -2.556,0 17.898,9 441,9 71.956,9 5.325,0 77.281,9 13.671,8
500000 200000 0 LAST Basic fuel price: €300// Current fuel price: €436	YEAR PERIOD MT {Metric Tonne} 9,15/MT	532500		Total Basic Price Special Tariff Discount (532.500kWh x €0.0048-} Fuel Adjustment (532.500kWh x €0.038613) Public Service Obligations (532.500kWh x €0.00083) Total subject to VAT (19%) RES & ES Fund (532.500kWh x €0.01) Total charges for the period before VAT VAT (19%) Total charges for the period	56.172,0 -2.556,0 17.898,9 441,9 71.956,9 5.325,0 77.281,9 13.671,8
\$00000 \$00000 200000 496	YEAR PERIOD MT {Metric Tonne} 9,15/MT	532500		Total Basic Price Special Tariff Discount (532.500kWh x €0.0048-} Fuel Adjustment (532.500kWh x €0.038613) Public Service Obligations (532.500kWh x €0.0083) Total subject to VAT (19%} RES & ES Fund (532.500kWh x €0.01) Total charges for the period before VAT VAT (19%) Total charges for the period	56.172.0 -2.556.0 17.998.9 441.9 71.956.9 5.325.0 77.281.9 13.671.8 90.953,7
60000 400000 200000 LAST Basic fuel price: €300// Current fuel price: €305 Fuel adjustment charge	YEAR PERIOD MT {Metric Tonne} 9,15/MT	532500 CURRENT		Total Basic Price Special Tariff Discount (532.500kWh x €0.0048-} Fuel Adjustment (532.500kWh x €0.038613) Public Service Obligations (532.500kWh x €0.00083) Total subject to VAT (19%) RES & ES Fund (532.500kWh x €0.01) Total charges for the period before VAT VAT (19%) Total charges for the period	56.172.0 -2.556.0 17.998.9 441.9 71.956.9 5.325.0 77.281.9 13.671.8 90.953,7
60000 40000 20000 LAST Basic fuel price: €300// Current fuel price: €300// Current fuel price: €435 Fuel adjustment charge	3340 YEAR PERIOD MT (Metric Tonne) 1,15/MT : €0,033613/kWh Hñektpropuod Kút	532500 CURRENT		Total Basic Price Special Tariff Discount (532.500kWh x €0,0048-} Fuel Adjustment (532.500kWh x €0,00083) Total subject to VAT (19%) RES & ES Fund (532.500kWh x €0,01) Total charges for the period before VAT VAT (19%) Total charges for the period	56.172.0 -2.556.0 17.898.9 441.9 5.325.0 77.281.9 13.671.8 90.953,77 €90.953,77 55 LIM10 Amount due
600000 400000 200000 LAST Basic fuel price: €300/A Current fuel price: €300/A Current fuel price: €300/A	3340 YEAR PERIOD MT (Metric Tonne) 1,15/MT : €0,033613/kWh Hñektpropuod Kút	532500 CURRENT		Total Basic Price Special Tariff Discount (532 500kWh x €0,0048-} Fuel Adjustment (532 500kWh x €0,0048-} Public Service Obligations (532 500kWh x €0,00083) Total subject to VAT (19%) RES & ES Fund (532 500kWh x €0,01) Total charges for the period before VAT VAT (19%) Total charges for the period	56.172.0 -2.556.0 17.898.9 441.9 71.956.9 5.325.0 77.281.9 13.671.8 90.953,7 €90.953,77

Classification of Electrical Power

- The electric power is divided into two types:
 - \succ the AC power
 - \succ the DC power
- The classification of the electric power depends on the nature of the current or voltage (AC od DC)

Recommended watch:

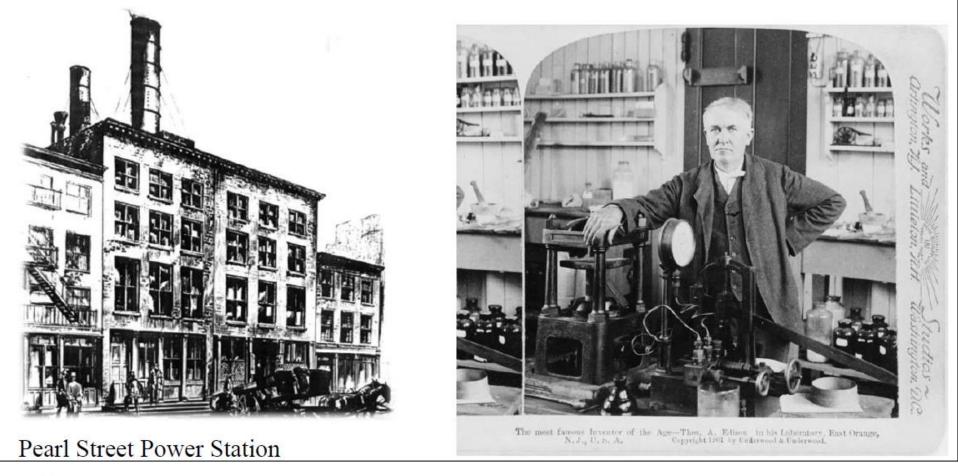
https://www.youtube.com/watch?v=vN9aR2wKv0U

Battle of Currents

The war of the currents, sometimes called battle of the currents, was a series of events surrounding the introduction of competing electric power transmission systems in the late 1880s and early 1890s.

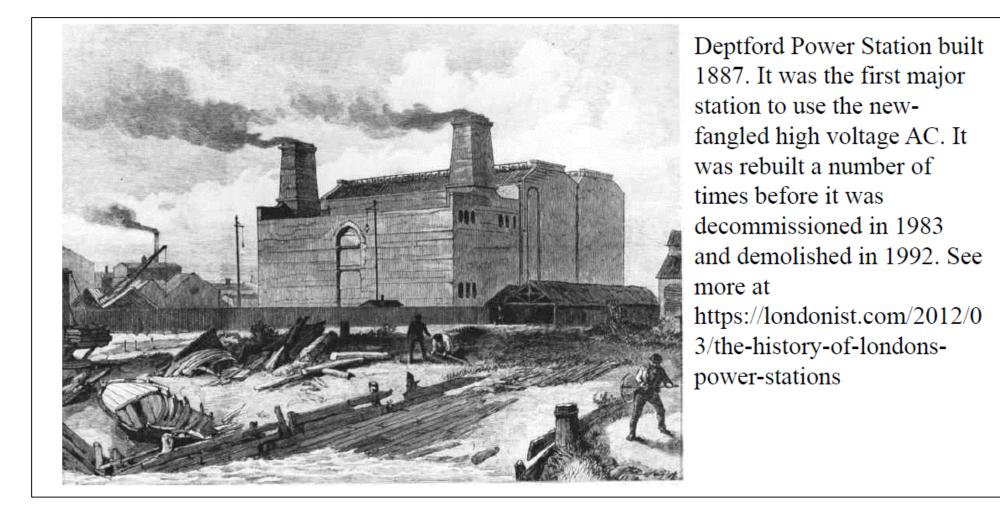
University of Cyprus Department of Electrical and Computer Engineering

Nikola Tesla and Thomas Edison


Battle of Currents or The Current War

The Current War is a 2017 American historical drama film inspired by the 19th-century competition between Thomas Edison and George Westinghouse over which electric power delivery system would be used in the United States (often referred to as the "war of the currents").

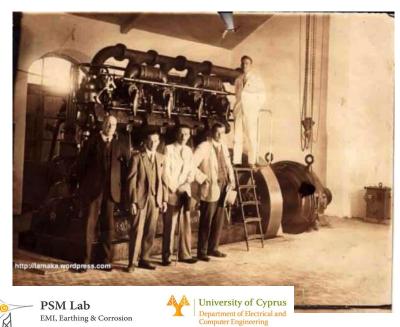
Brief History of Power Systems


- > **1882:** First central (DC) electricity generating station in the USA by Edison.
- ➤ Fed a load of 400 lamps, each of them consuming 83 W.

PSM Lab EMI, Earthing & Corrosion University of Cyprus Department of Electrical and Computer Engineering

Brief History of Power Systems

> 1887: First major alternating current (AC) station in **Deptford** Great Britain by machines of 10000 h.p. and transmitted at 10 kV to consumers in London.


University of Cyprus MI, Earthing & Corrosion

PSM Lab

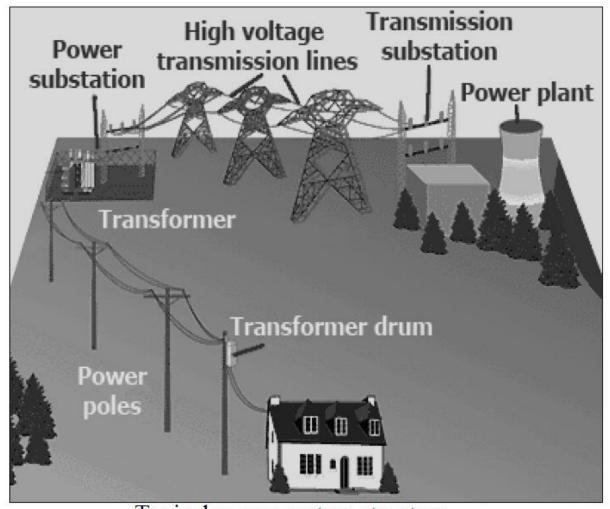
Brief History of Power Systems: Cyprus

- Electricity was first introduced in 1903 with the installation by the then British colonial government of a power generator to serve the needs of the Commission in the capital, Nicosia. This was followed shortly afterwards by the installation of a second generator at the Lefkosia General Hospital.
- A limited number of Cypriots soon started to use electricity from 1912, when the first electricity company, which operated a power station with generators, was formed in Lemesos under the initiative of the Stamatiou brothers, George Yiannopoulos and other entrepreneurs from Lemesos. The company was called Ηλεκτροφωτιστική Εταιρεία Λεμεσού (The Limassol Electric Light Company). You can read more on:

https://www.eac.com.cy/EN/eac/organisation/Pages/History.aspx

Οι φωτογραφίες είναι από τα blog του Φοίβου Σταυρίδη και Σωκράτη Τ. Αντωνιάδη

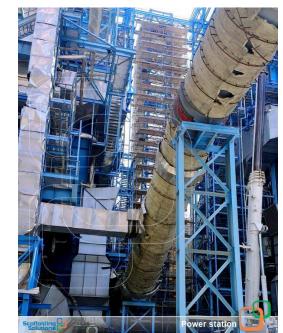
https://perithorio.com/2018/10/04/%CE%BF-%CE%B7%CE%BB%CE%B5%CE%BA%CF%84%CF%81%CE%B9% %83%CE%BC%CF%82%EF%82-%CF%83%CF%84%CE%B7%CE%BD-%CE%BA%CF%8D%CF%80%CF%81%CE%BF-%CE%BC%CE%B9%CE%BA%CF%81%CF%8C-%CE%B9%CF%83%CF%84%CE%BF%CF%81%CE%B9/


Electric Power Systems: What is their purpose?

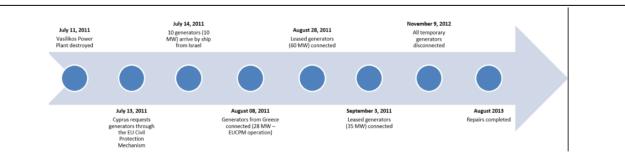
□ Transfer electric energy from point A to point B:

- > Do it safely (don't kill anyone)
- > Do it reliably (continuous supply, no interruptions)
- > Do it environmentally friendly
- \succ Do it at a low cost and accessible to all

University of Cyprus


PSM Lab EMI, Earthing & Corrosion

Typical power system structure.

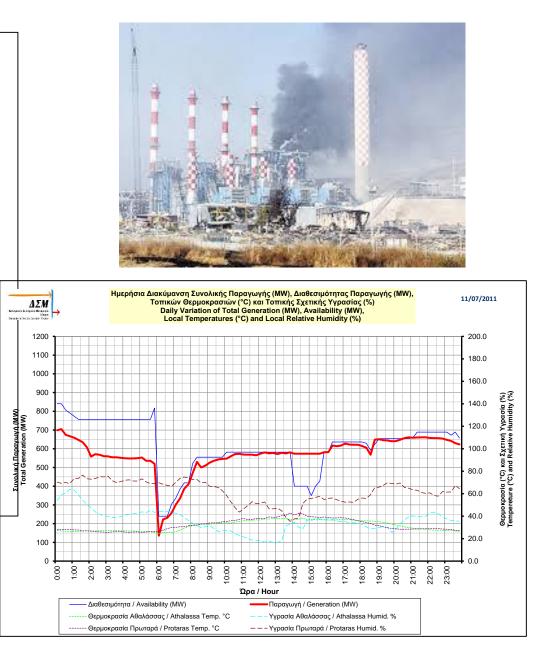


Electric Power Systems: How bad can an outage be?

Karagiannis, et al. "Power grid recovery after natural hazard impact", tech. rep., 2017

- The Cyprus outage of 2011 affected all of the population on the island, leading to reduced supply and scheduled outages over a prolonged period of time
- Triggered by an explosion at Evangelos Florakis Naval Base that destroyed the Vasilikos Power Plant
- Almost 60% of the island's power generating capacity was destroyed
- Estimated economic losses from power interruption¹ around 840 million euros per year

¹T. Zachariadis, A. Poullikkas, The costs of power outages: A case study from Cyprus, Energy Policy, 2012


University of Cyprus

Department of Electrical and

Computer Engineering

PSM Lab

EMI, Earthing & Corrosion

βλαβές

ΑΝΕΜΟΣΤΡΟΒΥΛΟΣ 2020 ΑΣΤΡΟΜΕΡΙΤΗΣ – ΝΙΚΗΤΑΡΙ

βλαβές

ΑΝΕΜΟΣΤΡΟΒΥΛΟΣ 2020
 ΑΣΤΡΟΜΕΡΙΤΗΣ – ΝΙΚΗΤΑΡΙ

βλαβές

• ΑΝΘΡΩΠΙΝΟΣ ΠΑΡΑΓΟΝΤΑΣ

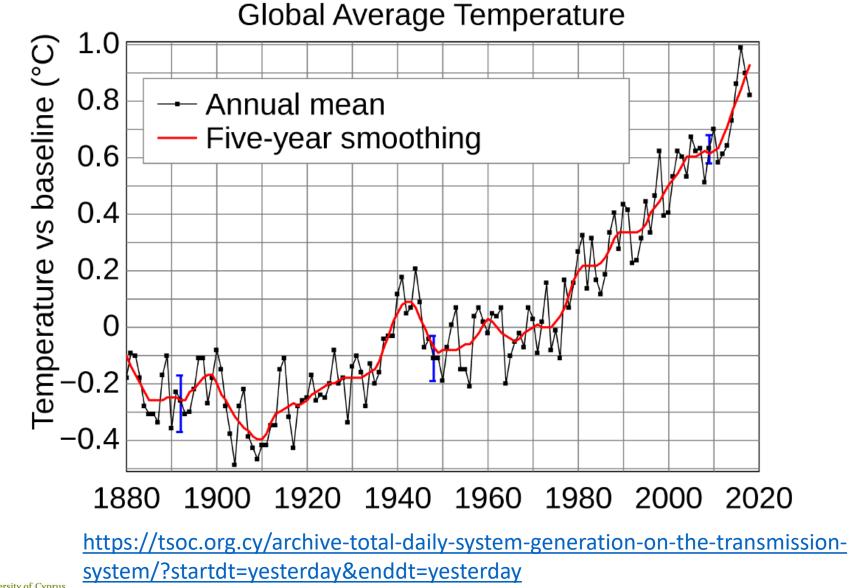
Concentrating Critical Assets in Vasilikos area

+ News

□ Fact (?) : Cyprus currently ramps up its own energy exploration with plans for natural gas pipelines and storage terminals, to facilitate the transportation of gas supplies within Cyprus and abroad.

University of Cyprus

Department of Electrical and


Computer Engineering

PSM Lab

EMI, Earthing & Corrosion

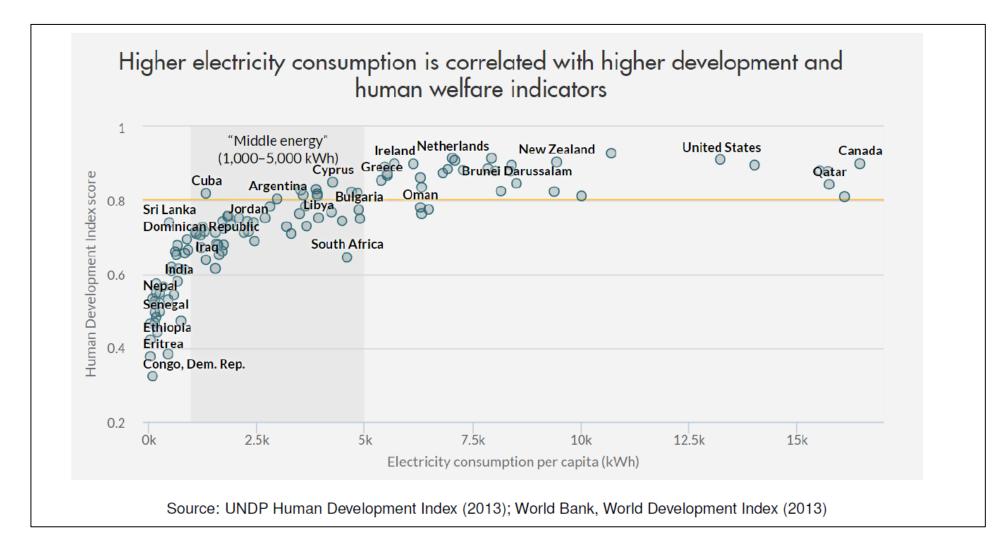
- HYDROCARBON SERVICE Ministry of Energy, Commerce, Industry and Tourism Links Home Page Announcements Contact us Introduction Master Plan for the Vasilikos Area ± Legislation Toriest DL) Earlohy Draws Restorted Decement Solety Set-Exploration Area Hydrocarbon Licences Energy Structures nstallation Oil products LNG storage & Phase 1 gas-based industry LNG Vasilikos Phase 2 DOWER station Evangelos Vassiliko Florakia' Cemer Works ENTAKONO Party and NO FEHRING
- □ The Hydrocarbon service of the Ministry of Energy has disclosed its master plan for the Vassilikos Area - to enable the development of critical infrastructures for the transportation and storage of gas and oil.

Electric Power Systems: Environmental aspects

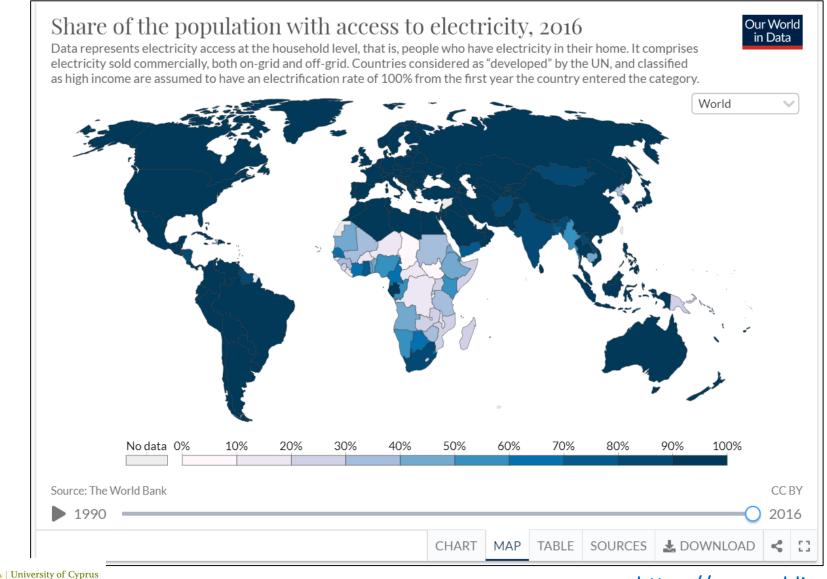
PSM Lab
 EMI, Earthing & Corrosion

University of Cyprus Department of Electrical and Computer Engineering

Problems with the use of Fossil Fuels

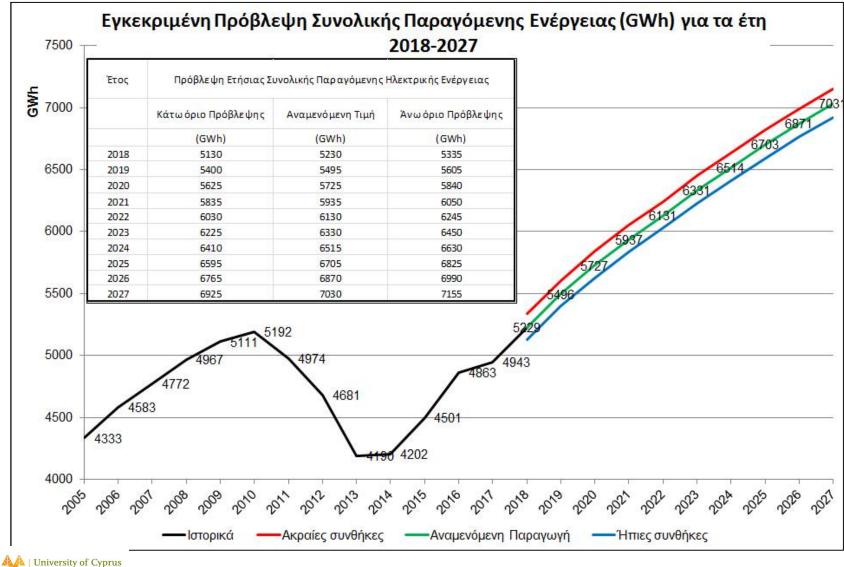


- ➤ Energy Generation from fossil fuels -→ contributes to greenhouse gas emissions and climate change
- Fossil fuels are finite


Cost of Energy and Development

 PSM Lab
 University of Cyprus

 EMI, Earthing & Corrosion
 Department of Electrical and Computer Engineering


Share of Population with access to Electricity

PSM Lab EMI, Earthing & Corrosion

https://ourworldindata.org/energy-access

Forecast on Electricity Usage: the case of Cyprus

Department of Electrical and Computer Engineering

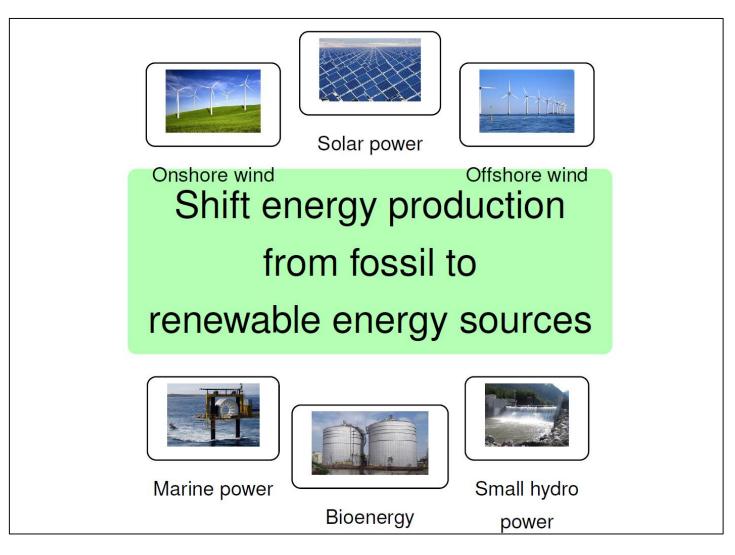
PSM Lab

EMI, Earthing & Corrosion

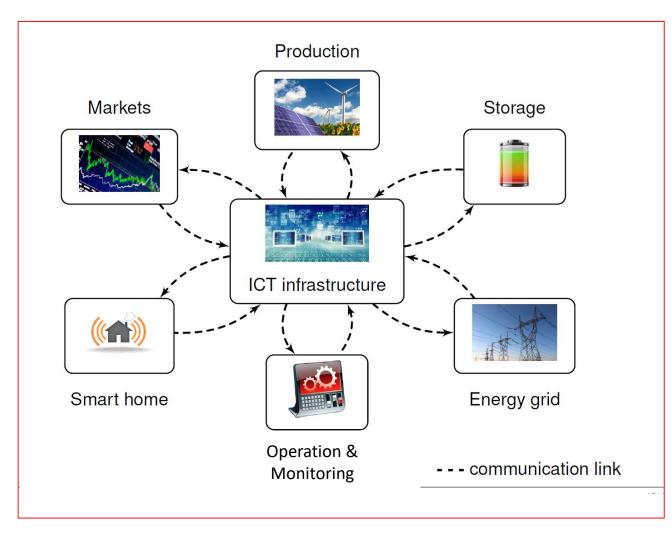
Why the design of Electric Power Systems is a complex issue?

□ Transfer electric energy from point A to point B:

- Do it safely (don't kill anyone)
- Do it reliably (continuous supply, no interruptions)
- > Do it environmentally friendly
- Do it at a low cost and accessible to all


Why is it hard to do these?

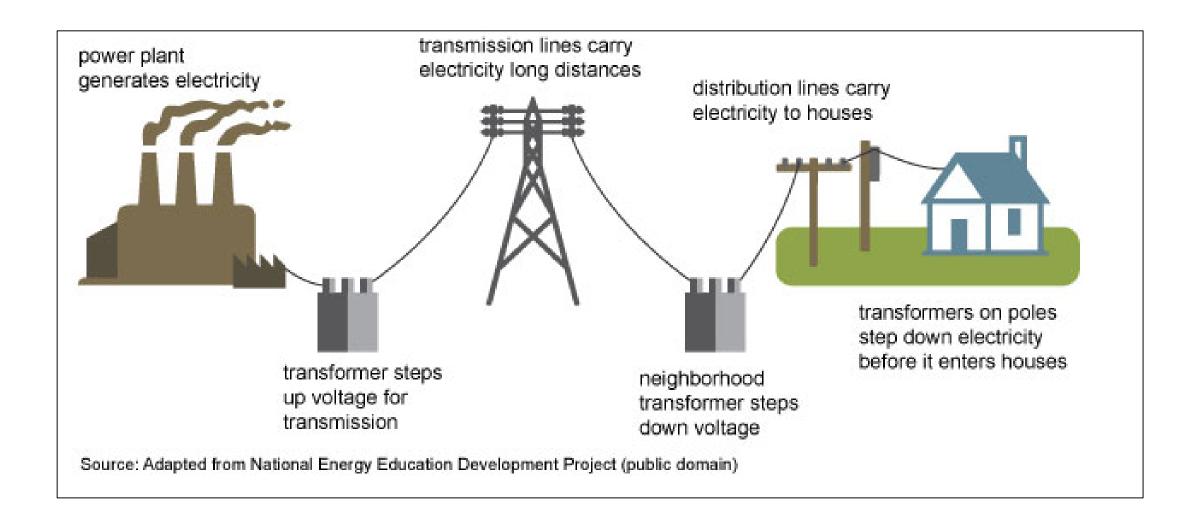
PSM Lab


- World's largest and most complex engineered systems
- Modern industrialized societies heavily rely on use and steady supply of electric energy
- Power systems are expected to be very reliable
- Even a single failure can have catastrophic consequences for society!
- In addition: power systems continuously subjected to large variety of disturbances and contingencies (lighting, hurricanes, human errors,...)
- → Rather complex and sophisticated industrial processes behind electric energy supply!

More challenges are introduced by the Integration of Renewable Energy Systems (RES)

PSM Lab EMI, Earthing & Corrosion University of Cyprus Department of Electrical and Computer Engineering

Current and Future Power Systems: More controllable & observable



• Key ingredients: ICT, renewables, flexible operation & consumption

- Many challenging open questions
- Large investments (EU-wide 500 billion euros by around 2020)
- \Rightarrow Plenty of exciting & interdisciplinary opportunities

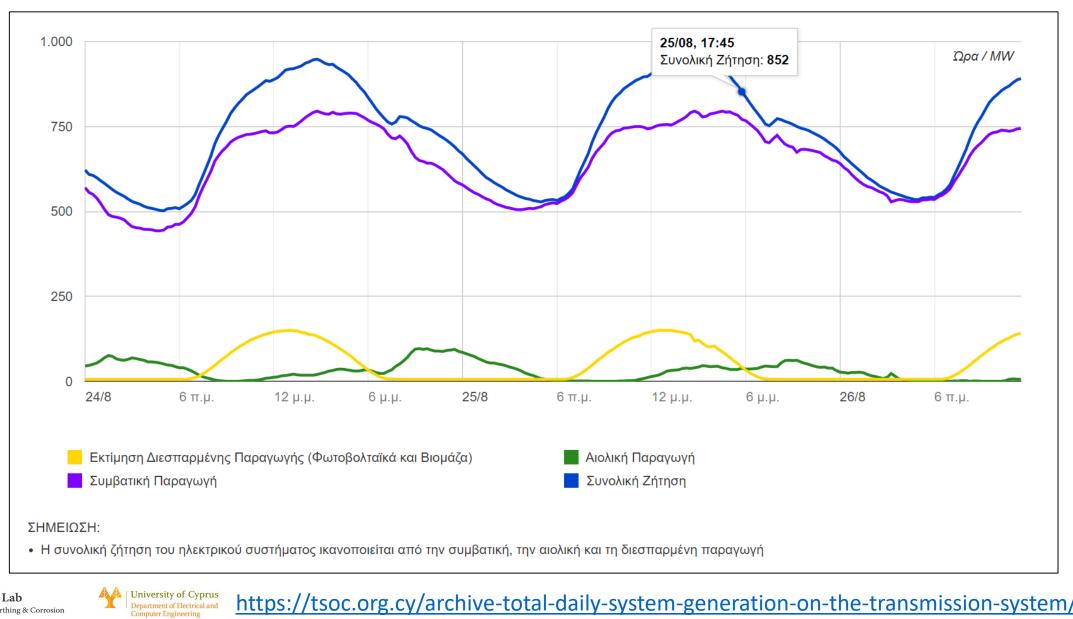
PSM Lab EMI, Earthing & Corrosion

Generation, Transmission and Distribution of Electricity: The basics

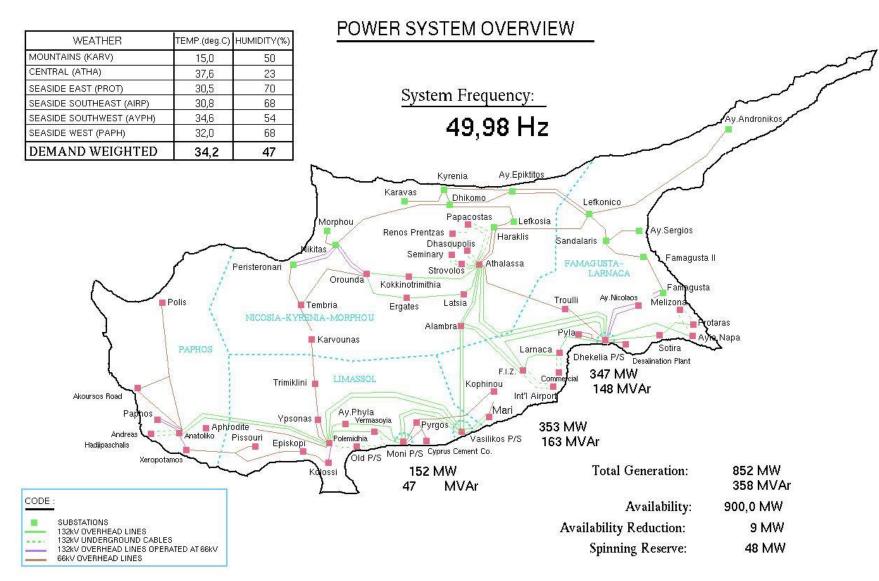
 PSM Lab
 University of Cyprus

 EMI, Earthing & Corrosion
 Department of Electrical and Computer Engineering

Conventional Generation in Cyprus



ΣΥΝΟΛΙΚΗ ΕΓΚΑΤΕΣΤΗΜΕΝΗ ΚΑΙ ΑΝΑΜΕΝΟΜΕΝΗ ΔΙΑΘΕΣΙΜΗ ΣΥΜΒΑΤΙΚΗ ΙΣΧΥΣ (MW) ΑΥΓΟΥΣΤΟΣ 2020						
Ηλεκτροπαραγωγός	Εγκαταστάσεις			Μονάδες	Ολική Ικανότητα Παραγωγής Ισχύος	
Σταθμός	Συνδυασμένου Κύκλου	Ατμοστρόβιλοι	Αεριοστρόβιλοι	Εσωτερικής Καύσης	Συνολική Εγκατεστημένη Ισχύς Ηλεκτρ. Σταθμών	Αναμενόμενη Διαθέσιμη Ισχύς Ηλεκτρ. Σταθμών
Μονής	-	-	4 x 37,5 = 150		150	128
Δεκέλειας	-	6 x 60 = 360	-	2 x 50 = 100	460	367
Βασιλικού	2 x 220 = 440	3 x 130 = 390	1 x 37,5 = 37,5	-	868	702
Ολική Ικανότητα Παραγωγής Ισχύος	440	750	187,5	100	1478	1197



Αρχείο Ημερήσιας Παραγωγής Ηλεκτρικού Συστήματος (MW)

PSM Lab EMI, Earthing & Corrosion https://tsoc.org.cy/archive-total-daily-system-generation-on-the-transmission-system/

Transmission System of Cyprus

 PSM Lab
 University of Cyprus

 EMI, Earthing & Corrosion
 Department of Electrical and Computer Engineering

find more info: <u>https://www.dsm.org.cy/</u>

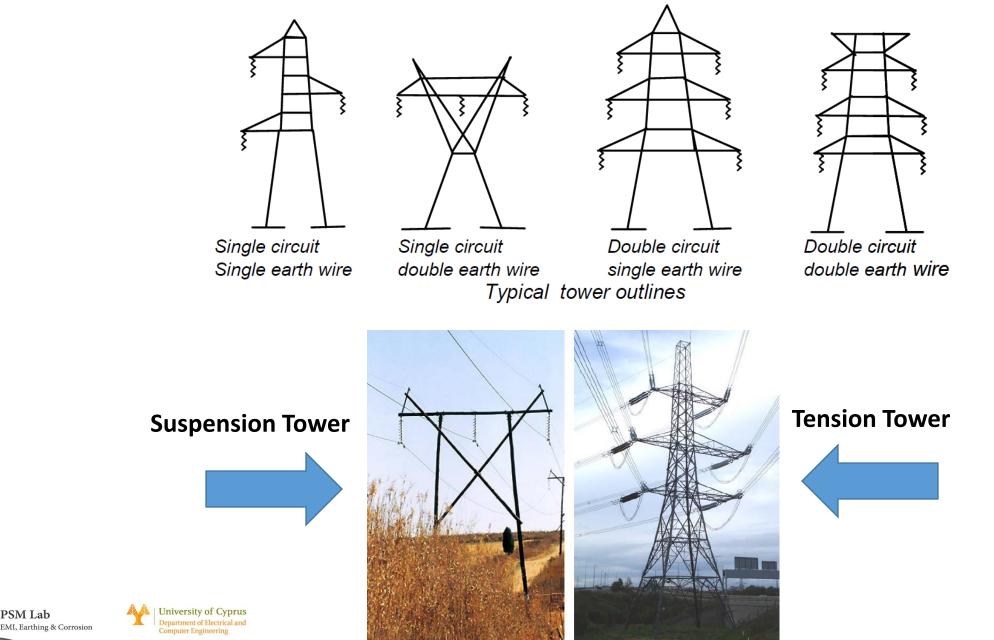
Transmission System of Cyprus

THE CYPRUS TRANSMISSION SYSTEM

Transmission Substations: 62

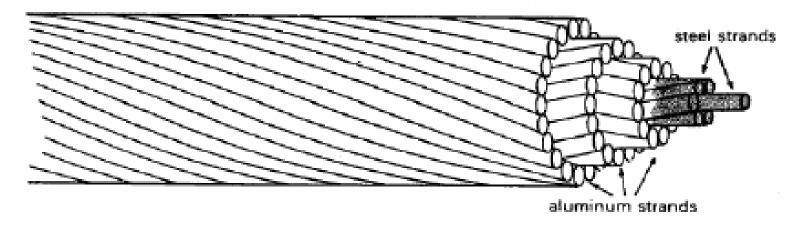
Primary Substations: 9

Overhead Lines: 1150 km


Underground Cables: 212 km

 PSM Lab
 University of Cyprus

 EMI, Earthing & Corrosion
 Department of Electrical and Computer Engineering



General Characteristics – Poles & Towers

PSM Lab

General Characteristics – Conductors

•ACSR –Aluminium Conductor Steel Reinforced

•AAAC –All Aluminium Alloy Conductors

•AACSR-Aluminium Alloy Conductors Steel Reinforced

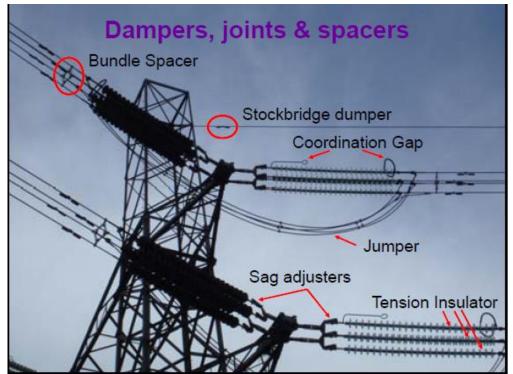
•ACAR–Aluminium Conductor Alloy Reinforced

General Characteristics – Conductors

Parameter	Importance	6AI./1St.		
Relative conductivity (%)	Minimises resistive losses. High value desired. Provides good resistance for lov			
20°C (Ωkg/km) Density (kg/m ³)	mass. Low value desired. System mass. Low value	8	26AI./19St.	54AI./19St.
Resistance Temperature	desired. Change in resistance as a function of temperature. Low	7AI./1St.		J4AI./1951.
Coefficient (°C ⁻¹) Coefficient of	value desired. Partly determines sag as	Geo		
linear expansion (°C ⁻¹)	conductors thermally expand. Low value desired. Imposes maximum tension that	8AI./1St.	18AI./1St.	6 ⁶⁶⁶ 6
Ultimate tensile stress (MN/m ²)	and therefore important for sag High value desired.			
Modulus of elasticity (MN/m ²)	Determines expansion of conductor under normal load. High value desired.	6A1./7St.	18AI./19St.	42AI./19St.

Code name	Stranding pattern	Al area (mm ²⁾	Steel area (mm²)	Diameter (mm)	Mass (kg/km)	Breaking load (kN)	Resistance (Ω/km)
Horse	12/7/2.79	73.4	42.8	14.0	538	61.2	0.3936
Lynx	30/7/2.79	183.4	42.8	19.5	842	79.8	0.1441
Zebra	54/7/3.18	429.9	55.6	28.6	1621	131.9	0.0674
Dove	26/3.72 + 7/2.89	282.0	45.9	23.6	1137	99.9	0.1024

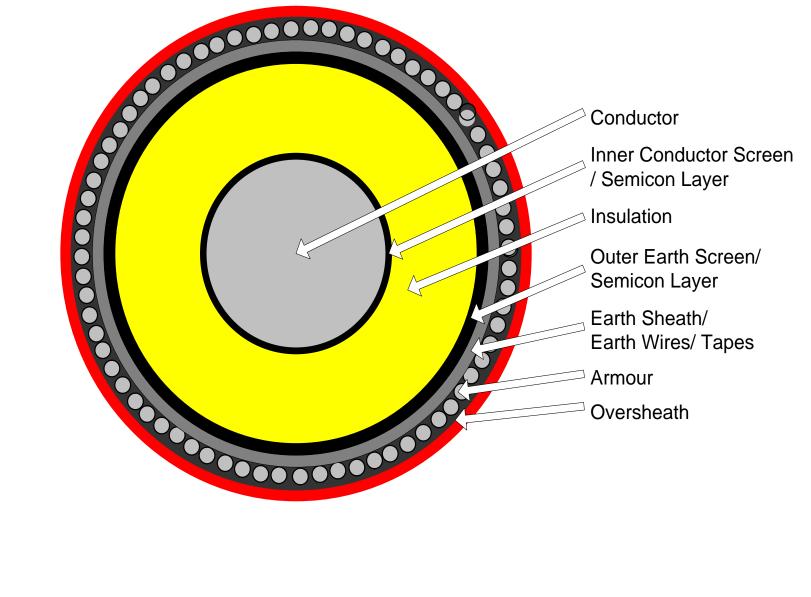
Conductor Bundles



PSM Lab EMI, Earthing & Corrosion

Clamps, Dampers and Joints

Power Cable Components



University of Cyprus

Department of Electrical and Computer Engineering

PSM Lab

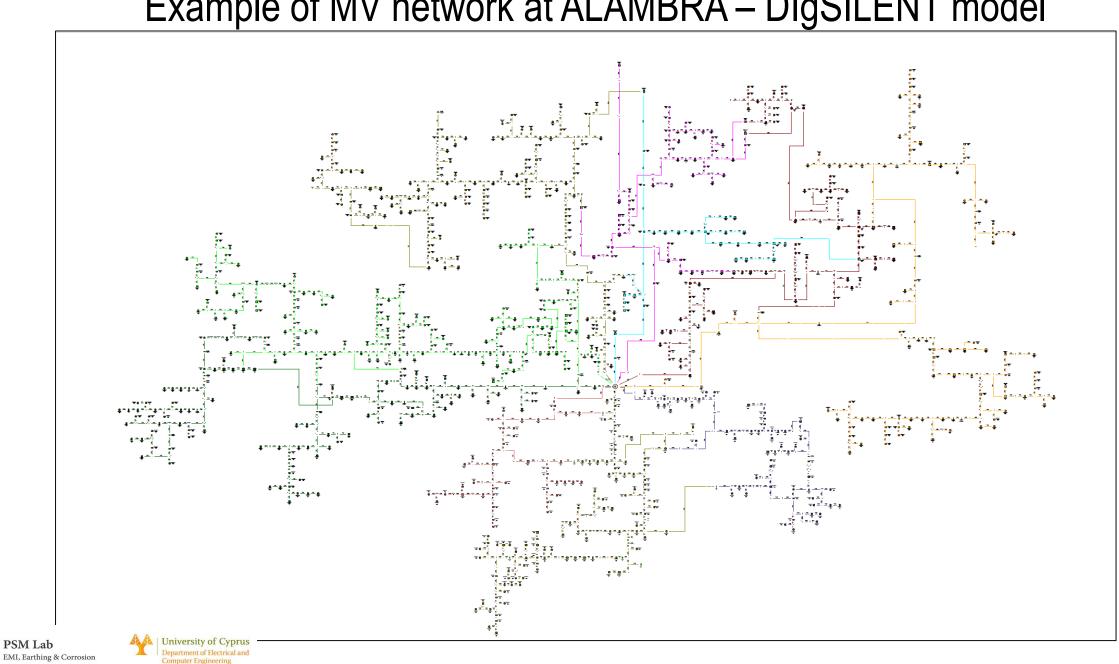
EMI, Earthing & Corrosion

Power Cable Installation

PSM Lab EMI, Earthing & Corrosion

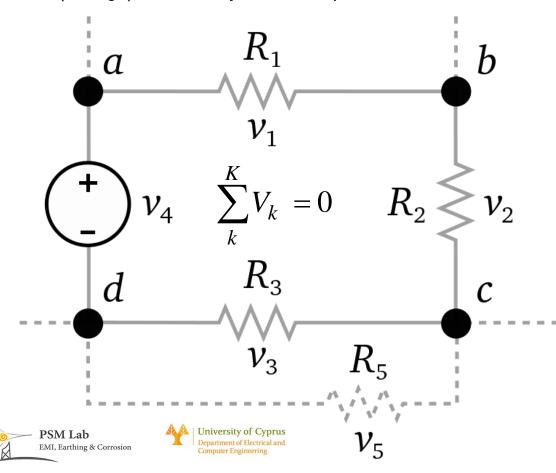
OHL Vs. Cables

Disadvantages	Advantages
More expensive than an equivalent overhead line circuit (especially at EHV levels)	No visual impact except that which occurs during installation
The time to repair a cable fault is generally longer than the time to repair an overhead line fault (fault location, excavation and jointing can take time)	Provide relatively reliable circuits as they are not exposed to lightning or affected by wind borne debris
Difficulty relating to installation in already crowded rights of way	Protected from vandalism


Distribution – Medium voltage (11 kV to 0.4 kV)

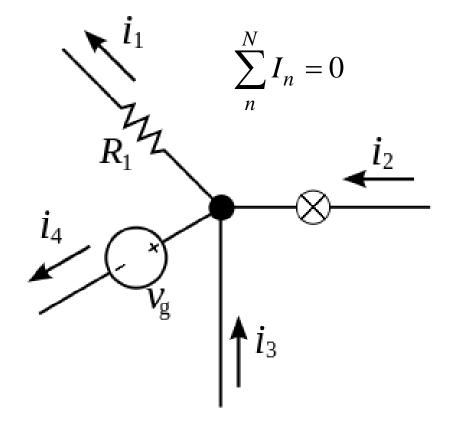
University of Cyprus Department of Electrical and Computer Engineering

EMI, Earthing & Corrosion

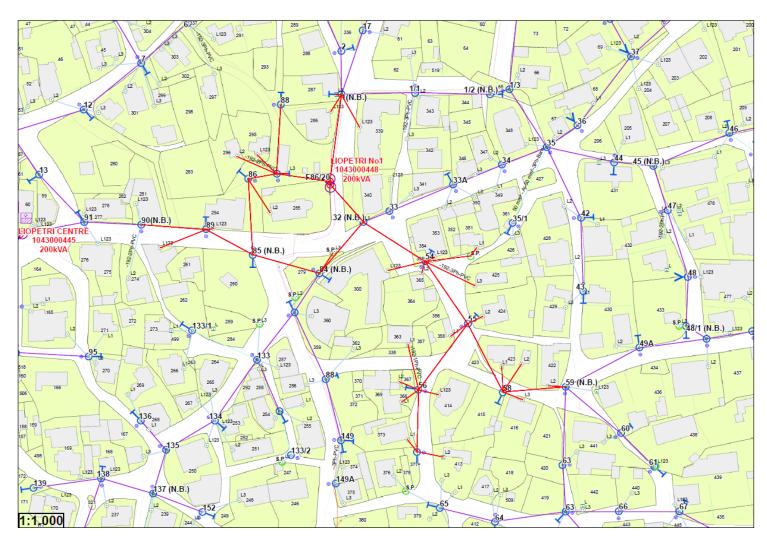


Example of MV network at ALAMBRA – DIgSILENT model

KVL and KCL


KVL:

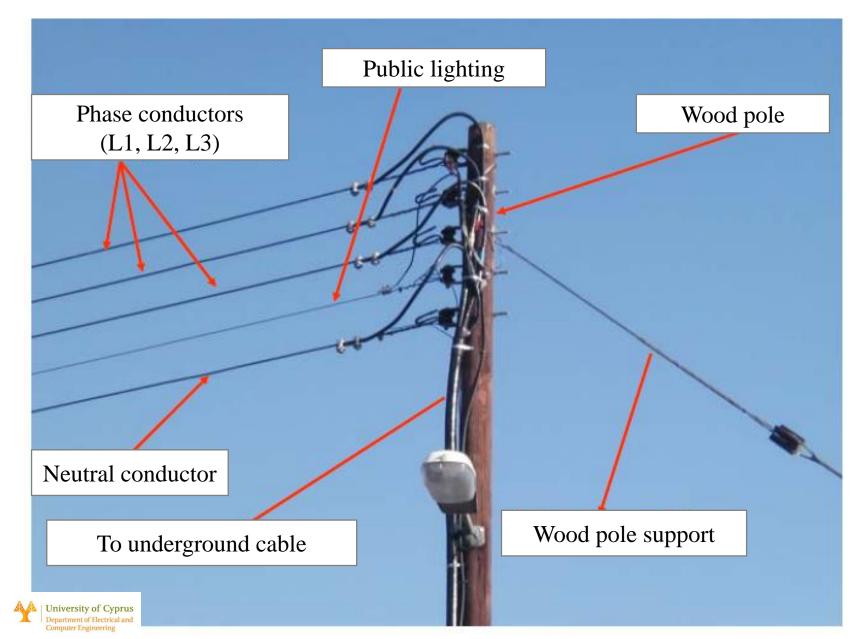
The directed sum of the electrical potential differences (voltage) around any closed loop is zero



KCL:

The algebraic sum of currents in a network of conductors meeting at a node is zero

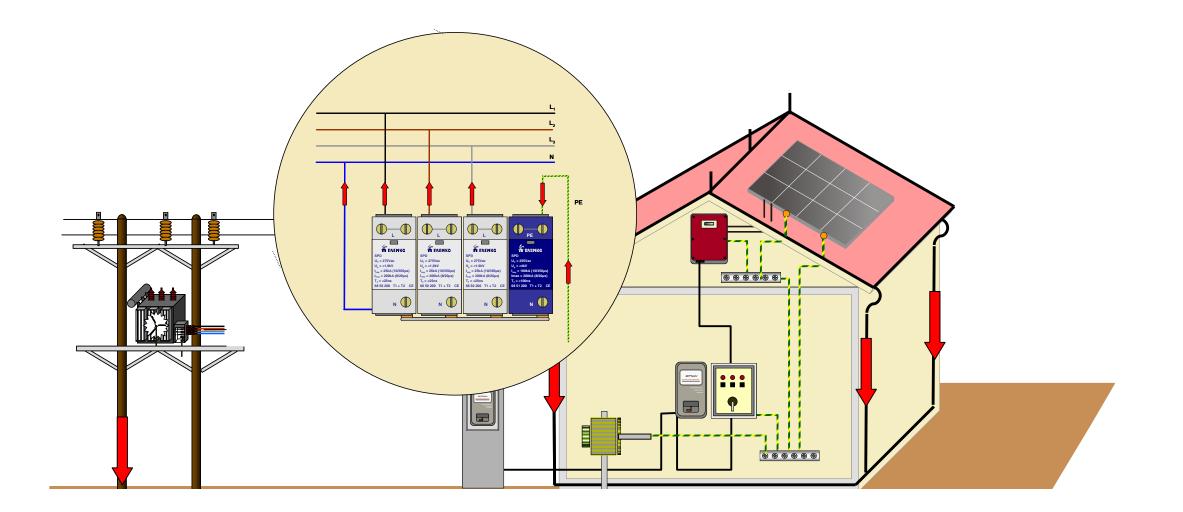
Example of LV network at Liopetri Centre – ArcGIS



Service points	26
Total number of customers	52
Residential customers	23
Commercial customers	29

 \checkmark ArcGIS software (available to EAC) is used as a very effective off-line tool that can facilitate the visualization of LV networks (that are not monitored on a real-time basis)

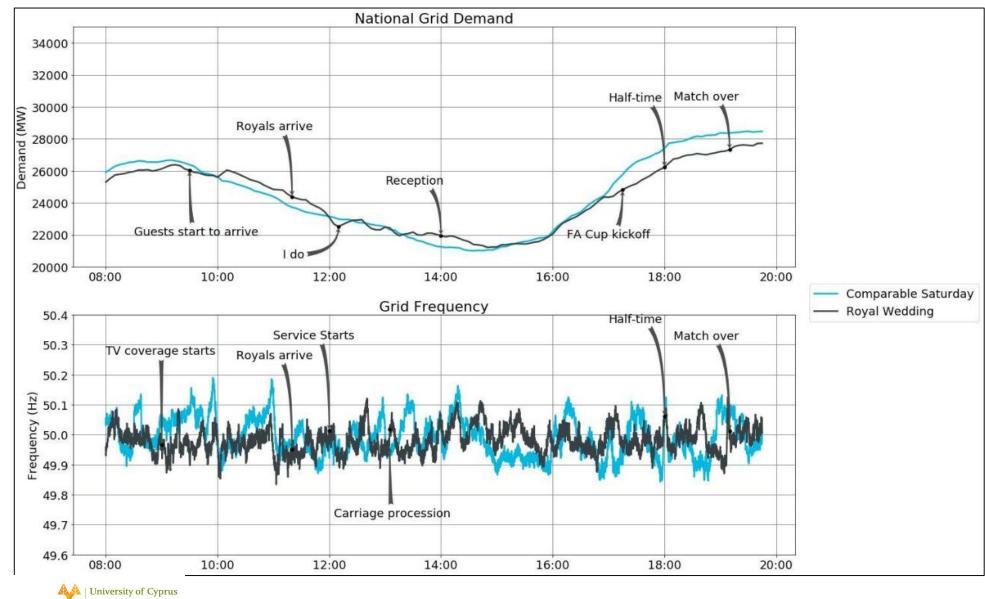
PSM Lab EMI, Earthing & Corrosion


Distribution – Low voltage (<1 kV)

PSM Lab

EMI, Earthing & Corrosion

Electricity Supply at Domestic Level


Auxiliary slides – Energy consumption and profiles

Η επίδραση του κορονοϊού στην ενεργειακή συμπεριφορά των Κυπρίων

https://www.cut.ac.cy/news/article/?contentId=254240

Auxiliary slides – Energy consumption and profiles

PSM Lab EMI, Earthing & Corrosion

Department of Electrical and Computer Engineering