

Φασματοσκοπία Οπτικής Σκέδασης (Light Scattering Spectroscopy)

2

Εισαγωγή

LSS – Πως ξεκίνησε;

• Ποιο είναι το πρόβλημα;

- Γαστρεντερολόγοι → Χρειάζεται επί τόπια (in situ) ανίχνευση του καρκίνου σε πραγματικό χρόνο (real-time)
- Πρέπει να είναι συμβατή με τα ενδοσκόπια
- Κατά προτίμηση μη-επεμβατική (οπτική ανίχνευση του καρκίνου με ένα "μαγικό" λέιζερ;)
- Πρέπει να είναι οικονομικά προσιτή και φιλική προς τον χρήστη
- Οπτική Βιοψία (Optical Biopsy):
 - Με επεμβατική ανίχνευση του καρκίνου με φως

Optical "biopsy"

3

Εισαγωγή

• Οπτική Βιοψία

- Μη επεμβατική (Noninvasive) → Οπτική Ανίχνευση
- Συμβατή με τα ενδοσκόπια → Μέσω οπτικών ινών
- Διάγνωση → Οπτική φασματοσκοπία
- Διάφορες φασματοσκοπίες μπορούν να χρησιμοποιηθούν για διάγνωση στους ιστούς με φως
 - Αυτοφθορισμός (Auto-fluorescence)
 - Φθορισμός από εξωγενή φάρμακα (Exogenous-drug fluorescence)
 - Raman
 - Απορρόφηση (Absorption) & FTIR
 - Ελαστική Σκέδαση (Elastic scattering)

The internist's dream: smart colonoscope

Optical "biopsy"

Τι ψάχνουν οι ιστοπαθολόγοι;

• Τι "βλέπουν" οι ιστοπαθολόγοι;

- Δομικές (Architectural) αλλαγές
- Χαρακτηριστικά του καρκίνου
 - Σχήμα του κυττάρου
 - Σχήμα του πυρήνα (nucleus)
 - Λόγος πυρήνα ως προς τον ολικό όγκο του κυττάρου
 - Κατανομή της χρωματίνης (Chromatin)
 - Δομή των οργανιδίων
 - Πολυμορφισμό (PLEOMORPHISM) (παραλλαγές στο πυρηνικό μέγεθος και την πυκνότητα του DNA)
 - Πυκνότητα και κατανομή των κυττάρων
- Αυτή η πληροφορία παρέχεται από δεδομένα ελαστικής οπτικής μεταφοράσς (elastic opticaltransport data)
 - Ελαστική Σκέδαση
 - Ανάκλαση / Μετάδοση
 - Απορρόφηση
- Ελαστική Σκέδαση
 - Φασματική και γωνιακή εξάρτηση του φωτός από το μέγεθος και τη δομή των σωματιδίων της σκέδασης

Normal cells

5

Θεωρία Μie

- Gustav Mie, 1908
- Σωματίδια μεγέθους όμοιου ή μεγαλύτερου του μήκους κύματος
- Γιατί μεταβάλλεται το φάσμα της σκέδασης ανάλογα με τη μικροσκοπική μορφολογία των ιστών;

$E_{\parallel s}$	$e^{-jk(r-z)}$	S_2	S_3	$\begin{bmatrix} E_{\parallel i} \end{bmatrix}$
$E_{\perp s}$	-jkr	S_4	S_1	$\lfloor E_{\perp i} \rfloor$

At some distance away from the particle:

$$\begin{bmatrix} I_{\parallel s} \\ I_{\perp s} \end{bmatrix} = \operatorname{constant} \begin{bmatrix} \left| S_2 \right|^2 & 0 \\ 0 & \left| S_1 \right|^2 \end{bmatrix} \begin{bmatrix} I_{\parallel i} \\ I_{\perp i} \end{bmatrix}$$
$$S_1 = \sum_q \frac{2q+1}{q(q+1)} (a_q \pi_q + b_q \tau_q)$$
$$S_2 = \sum_q \frac{2q+1}{q(q+1)} (a_q \tau_q + b_q \pi_q)$$

 a_{q} and b_{q} are complex expressions invoking spherical Bessel functions

1**n**1

 $\pi_{\rm q}$ and $\tau_{\rm q}$ are defined as

$$\pi_n = \frac{P_n^1}{\sin\theta}$$
 and $\tau_n = \frac{dP_n^1}{d\theta}$

where P_n^1 is the Legendre polynomial

Θεωρία Μie

• Αν πραγματικά σας αρέσουν τα μαθηματικά ...

$$a_{n} = \frac{\mu m^{2} j_{n}(mx) [x j_{n}(x)]' - \mu_{1} j_{n}(x) [mx j_{n}(mx)]'}{\mu m^{2} j_{n}(mx) [x h_{n}^{(1)}(x)]' - \mu_{1} h_{n}^{(1)}(x) [mx j_{n}(mx)]'},$$

$$b_{n} = \frac{\mu_{1} j_{n}(mx) [x j_{n}(x)]' - \mu_{1} j_{n}(x) [mx j_{n}(mx)]'}{\mu_{1} j_{n}(mx) [x h_{n}^{(1)}(x)]' - \mu h_{n}^{(1)}(x) [mx j_{n}(mx)]'},$$

 $j_n = \text{spherical Bessel functions} \qquad x = \alpha = 2\pi n_o a/\lambda \text{ the "size parameter"}$ $h_n^{(1)} = \text{spherical Hankel functions} \qquad m = N_i/N_o = n_i/n_o \text{ if no absorp.}$

[F(x)]' means differentiation with respect to the argument

Bohren & Huffman, Absorption and Scattering If Light by Small Particles, Wiley Science

Εξάρτηση ως προς μήκος κύματος

 Η διατομή σκέδασης των πυρήνων παρουσιάζει μια περιοδικότητα ως προς το μήκος κύματος

$$\sigma_{s}(\lambda,l) = \frac{\pi}{2}l^{2}\left(1 - \frac{\sin(2\delta/\lambda)}{\delta/\lambda} + \left(\frac{\sin(\delta/\lambda)}{\delta/\lambda}\right)^{2}\right)$$

 $\delta = \pi l (n_n - 1) n_c$

όπου

n_c είναι ο δείκτης διάθλασης του κυτταροπλάσματος n_n είναι ο δείκτης διάθλασης των πυρήνων ως προς το κυτταρόπλασμα.

• Εξάρτηση ως προς μήκος κύματος

• Με διάχυτη ανάκλαση, όλα τα μεγέθη σωματιδίων φαίνονται λευκά

- Εξάρτηση ως προς μήκος κύματος
 - Όταν d ↑
 - Περίοδος ταλάντωσης ↓
 - Χαρακτηριστικά
 - Περίοδος κορυφών → μέγεθος σκεδαστή
 - Πλάτος διαμόρφωσης → αριθμός των σκεδαστών
 - Πιο συχνά → μείγμα από σκεδαστές
 - Υπέρθεση (Superposition) φασμάτων

• Εξάρτηση ως προς μήκος κύματος

- Αντίθεση (Contrast) από πόλωση (Polarization)
 - Διαχωρίζει μονή από πολλαπλή σκέδαση

Αρχές απεικόνισης με LSS

Tissue

Αρχές απεικόνισης με LSS

13

Αρχές απεικόνισης με LSS

- Απεικόνιση με LSS Αδενώματος του Παχέως Εντέρου (Colon Adenoma)
 - Αύξηση του όγκου των πυρήνων

Εξάρτηση από τη γωνία σκέδασης

- Η κατανομή ως προς τη γωνία έχει και αυτή συμβολομετρική (ταλαντωτική) συμπεριφορά
- Όταν d ↑
 - Περίοδος ταλάντωσης ↓

Γωνιακή Απεικόνιση με LSS

Μελέτες με γωνιακή LSS: Πειράματα σε κύτταρα T84

Backman et al. IEEE J Sel Top Quant Electron, 7: 887:893, 2001

Περίληψη LSS

• Η αντίθεση στη LSS προέρχεται από:

- Πόλωση: μονή ή πολλαπλή σκέδαση
- Γωνία: μικροί ή μεγάλοι σκεδαστές
- Φάσμα: μέγεθος και δείκτης διάθλαση σκεδαστών

• Προτερήματα:

- Ισχυρό σήμα πιο απλός και φθηνός εξοπλισμός
- Ευαισθησία ως προς σημαντικά μόρια που δεν φθορίζουν (π.χ. αιμοσφαιρίνη (hemoglobin))
- Ευαισθησία τόσο ως προς τη δομή όσο και προς τη βιοχημική σύσταση
 - Μπορεί να διαχωρίσει διάφορους ιστούς

• Μειονεκτήματα:

 Μπορεί να μην είναι ευαίσθητη στις ανεπαίσθητες βιοχημικές αλλαγές που προηγούνται των δομικών αλλαγών.

Καθετήρες (probes) οπτικών ινών

Εφαρμογή #1:

 Βελτίωση της αξιοπιστίας και την ικανότητα της διαδερμικής διάγνωση βελόνα (αύξηση του όγκου της ευαισθησίας σε σχέση με FNA).

Εφαρμογή #2:

 Διάγνωση σε πραγματικό χρόνο και επί τόπου των περιθωρίων του όγκου κατά τη διάρκεια της χειρουργικής επέμβασης με διατήρηση του μαστού

Εφαρμογή #3:

 Αξιολόγηση σε πραγματικό χρόνο και επί τόπου του «φρουρού» λεμφαδένα (" sentinel" lymph node) κατά τη διάρκεια της χειρουργικής επέμβασης.

- Ανατομία του Μαστού
 Πολύπλοκη δομή
 - Ανομοιογενής (Heterogeneous)
 - Ορμονικός (Hormonal) έλεγχος
 - Αλλαγές με την ηλικία
 - Διάφορα είδη κυττάρων

•Κακοήθειες του Μαστού

Ductal

Comedo

Lobular

Paget's disease

Medullary

Metaplastic

Mucinous

Tubular

• Φάσματα από ιστούς του μαστού

Φρουρός λεμφαδένας (s entinel lymph node)

- Βιοψία SLN έχει ως στόχο να προσδιορίσει την ανάγκη εκτεταμένης χειρουργικής επέμβασης στη μασχάλη
- Οι ασθενείς που χρειάζονται περαιτέρω χειρουργική επέμβαση μπορεί να χρειαστεί να υποβληθούν σε ξεχωριστή χειρουργική επέμβαση
- Οι τρέχουσες τεχνικές για να εξετάσει του SLN κατά τη διάρκεια της επέμβασης δεν είναι πρακτικές

• Φάσματα από φρουρό λυμφαδένα

Πρωτοβάθμια Φροντίδα Υγείας

 Οι γιατροί πρωτοβάθμιας περίθαλψης έχει κακή ακρίβεια στον προσδιορισμό του πότε να παραπέμψουν έναν ασθενή στον ειδικό

