

Raman Spectroscopy

Professor Sir C.V. Raman

A New Type of Secondary Radiation

C. V. Raman and K. S. Krishnan, Nature, 121(3048): 501-502, March 31, 1928

The Nobel Prize in Physics 1930

"for his work on the scattering of light and for the discovery of the effect named after him"

1888-1970

First photographed Raman spectra

Bangalore, India

The Raman Effect → Inelastic Scattering

Some Vibrations in Benzene

Raman Spectrum of Cholesterol

Hanlon et al. "Prospects for in vivo Raman spectroscopy," Phys Med Biol 45: R1 (2000) 5

- •Raman Spectra \rightarrow **Fingerprinting a** Molecule
 - Raman spectra are molecule specific
 - Spectra contain information about vibrational modes of the molecule
 - Spectra have sharp features, allowing identification of the molecule by its spectrum

Examples of analytes found in blood which are quantifiable with Raman spectroscopy

Evolution of Raman Spectroscopy

- **1928~1960**
 - Minor experimental advances

• **1960**

 Invention of laser expands scope experiments

1980s: rapid technological advances

- Fourier Transform
 spectroscopy
- Charge Coupled Device (CCD) detectors
- Holographic and dielectric filters
- Near-Infrared (NIR) lasers

• Late 1980s→1990s

- Biomedical investigations
- Advanced dispersive spectrometers
- 2000 \rightarrow
 - In vivo application
 - Optical fiber probes
 - Non-linear spectroscopy

Applications of Raman Spectroscopy

- Structural chemistry
- Solid state
- Analytical chemistry
- Applied materials analysis
- Process control
- Microspectroscopy/imaging
- Environmental monitoring
- Biomedical

History of Biological Raman Spectroscopy

- 1970: Lord and Yu record 1st protein spectrum from lysozyme using HeNe excitation
- Evolution to NIR excitation
 - Decreased fluorescence, Increased penetration (mm)
- 1980s:
 - FT Raman with Nd:YAG and cooled InGaAs detectors (long collection times (30 min))
 - Clarke (1987-1988): visible excitation of arterial calcium hydroxyapatite and carotenoids
- 1990s, advances in:
 - Lasers, Detectors, Dispersive spectrometers, Filters
 - Chemometrics

Diagnostic Advantages of Raman Spectroscopy

- Wavelength selection (from UV to IR)
- No biopsy required
- Directly measures molecules
 - Small concentrations
 - Chemical composition
 - Morphological analysis
- Quantitative analysis
- In vivo diagnosis

- Interaction between electric field of incident photon and molecule
 - Electric field oscillating with incident frequency f_i : $E_i = E_0 \cos(2\pi f_i t)$

$$\vec{p} = \alpha \vec{E}$$

- Proportional to molecular polarizability, $\boldsymbol{\alpha}$
 - ease with which the electron cloud around a molecule can be distorted
- Polarization results in nuclear displacement $q = q_0 \cos(2\pi v_R t)$

• For small distortions, polarizability is linearly proportional to the displacement

$$\alpha = \alpha_0 + \left(\frac{\partial \alpha}{\partial q}\right)_0 q_0 + \dots$$

• **Resultant dipole:** $\vec{p} = \alpha \vec{E} = \alpha_0 E_0 \cos(2\pi v_i t) + \frac{1}{2} E_0 q_0 \left(\frac{\partial \alpha}{\partial q}\right)_0 \left\{ \cos\left[2\pi (v_i + v_R)t\right] + \cos\left[2\pi (v_i - v_R)t\right] \right\}$

Anti-Stokes Raman

Photo-Molecular Interactions

Raman scattering occurs only when the molecule is 'polarizable'

$$\frac{\partial \alpha}{dq} \neq 0$$

- Raman intensity $\propto f^4$
 - Classical dipole radiation
 - Stokes shifted Raman is more intense than anti-Stokes by Boltzmann factor:

$$\frac{I_A}{I_S} = \left(\frac{f_i + f_R}{f_i - f_R}\right)^4 e^{-\frac{hf_R}{kT}}$$

 Consistent with other scattering phenomena, often reported in terms of cross-section (σ [cm²]), or probability of scattering:

$$I = I_0 \sigma \rho l$$

- ρ : density of molecules
- I: pathlength

Characteristics of Raman Scattering

Very weak effect

- Only 1 in 10⁷ photons is Raman scattered
- NIR elastic scattering in tissue: $1/\mu_s \approx 1mm$
- NIR absorption in tissue: $1/\mu_a \approx 10cm$
- Red absorption in tissue or water: $1/\mu_a \approx 5m$
- Raman scattering in tissue or water: $1/\mu_R \approx 3km$

True scattering process

- Virtual state is a short-lived distortion of the electron cloud which creates molecular vibrations
- τ < 10⁻¹⁴ s
- Strong Raman scatterers have distributed electron clouds
 - C=C
 - π -bonds

 Spectroscopic frequencies reported in wavenumbers [cm⁻¹], proportional to transition energy :

$$\tilde{\nu} = \frac{E}{hc} = \frac{f}{c} = \frac{1}{\lambda}$$
 $\begin{bmatrix} E = hf \\ c = \lambda f \end{bmatrix}$

- Raman frequencies are independent of excitation wavelength and reported as shifts
 - Wavenumbers relative to excitation frequency:

$$\tilde{\nu}_{R} = \frac{1}{\lambda_{i}} - \frac{1}{\lambda_{R}}$$

Units & Dimensional Analysis

• Example

- NIR excitation at 830 nm: 12,048 cm⁻¹
- Typical Raman shift: ~1000 cm⁻¹
 - $\lambda_R = 905 \text{ nm}$
- Sharp biological Raman linewidths ~10 cm⁻¹ FWHM
 - $\Delta\lambda_R$ = 0.69 nm

UV, Visible, and NIR Excitation

Wavelength Selection

- Raman signals have a constant shift
 → can vary excitation wavelength and
 get same information
- UV
 - + Resonance enhanced
 - + $\lambda_R < \lambda_F \rightarrow$ filter fluorescence
 - photo damage, low penetration
- Visible
 - + Raman $\propto \lambda^{-4} \rightarrow \uparrow I_R$ vs. IR
 - fluorescence overlaps with Raman signal
- NIR:
 - + Low fluorescence
 - + Deep penetration
 - - Raman $\infty \lambda$ -4 $\rightarrow \downarrow$ IR vs. Vis

UV, Visible, and NIR Excitation

Applications

- UVRR
 - Biological macromolecules: nucleic acids, proteins, lipids
 - Organelles, cells, micro-organisms, bacteria, phytoplankton neurotoxins, viruses
 - Clinically limited: photomutagenicity
- Visible
 - Cells (minimal fluorescence)
 - DNA in chromosomes, pigment in granulocytes and lymphocytes, RBCs, hepatocytes
 - First artery studies: hydroxyapatite and carotenoids (Clarke 1987, 1988)
- NIR
 - Hirschfeld & Chase, 1986: FT-Raman
 - Tissue: artery, cervix, skin, breast, blood, GI, esophagus, brain tumor, Alzheimer's, prostate, bone

UV, Visible, and NIR Excitation

- Spectroscopic Advantages of NIR Raman
 - Narrow vibrational bands are chemical specific and rich in information
 - Freedom to choose excitation wavelength
 - Minimize unwanted tissue fluorescence
 - optimize sampling depth
 - Utilize CCD technology

Current Raman Instrumentation

Laser diodes

- Compact, Stable narrow line, NIR
- High throughput spectrographs (f/1.8)
- Holographic elements
 - Bandpass filters (eliminates spontaneous emission of lasing medium)
 - Notch filters (10⁶ rejection of Rayleigh scattered laser line)
 - Large area, highly efficient transmission gratings

CCD detectors

- High QE (back-thinned, deep-depletion)
- Low noise (LN2 cooled)
- Multichannel detection
- High throughput, filtered fiber optics probes
- NIR FT and scanning PMT systems no longer useful

Clinical Raman Systems

0.2

Distorts signal

Problems

Adds shot-noise

Fiber background

Low signal collection

Fiber Raman Probe Design

- Raman effect is weak
- Tissue is highly diffusive

Fiber background $\propto NA^2$

- Reduce Fiber Background
 - Fiber background produced equally in excitation and collection fibers
 - Excitation laser → Raman scattered light from tissue
 - Fiber Raman scattering, transmitted by excitation fiber*
 - Fiber Raman background elastically scattered from sample (and collected)
 - Excitation elastically scattered and gathered by collection fibers
 - Fiber Raman scattering by collection fibers*

From McCreery RL "Raman Spectroscopy for Chemical Analysis," 2000.

Filter Transmission

Problems

Fiber background

- Distorts signal
- Adds shot-noise

Low signal collection

- Raman effect is weak
- Tissue is highly diffusive

Solutions

Micro-optical filters

- Short-pass excitation filter
- Long-pass collection filter

Optimize optical design

- Characterize distribution of Raman light in tissue
- Define optimal geometry
- Design collection optics

Design Goals

- Restricted geometry for clinical use
 - Total diameter ~2mm for access to coronary arteries
 - Flexible
 - Able to withstand sterilization
- Designed to work with 830 nm excitation
- High throughput
 - Data accumulation in 1 or 2 seconds
 - Safe power levels
 - SNR similar to open-air optics laboratory system
 - Accurate application of models

The Burden of Cardiovascular Disease[†]

- •71,300,000 people in United States afflicted
- •910,600 deaths per year
 - 1 out of every 2.7 deaths
- Coronary artery disease claims 653,000 lives annually
 - 1 out of every 5 deaths
 - Economic cost: greater than \$142.5 billion

Arterial Anatomy

T: thrombus NC: necrotic core

Some Current Challenges in Cardiology

- Evaluation and development of therapeutics
- Etiology of atherosclerosis
- Mechanisms of re-stenosis
 - Post-angioplasty
 - Transplant vasculopathy
- Detection of vulnerable atherosclerotic plaques
 - Prediction/prevention of cardiac events

Vulnerable Plaques

- Account for majority of sudden cardiac death
- Frequently occur in clinically silent vessels
 - <50% stenosis</p>
- Effective treatments unknown
- Characterized by:
 - Biochemical changes
 - Foam cells
 - Lipid pool
 - Inflammatory cells
 - Thin fibrous cap (<65 μm)
- Currently undetectable

Standard Diagnostic Techniques

- Angiography
 - Severity of stenosis, thrombosis, dense calcifications
 - Provides no biochemical information
- Angioscopy
 - Surface features of plaque, including color
 - No information of sub-surface features
- Histopathology
 - Biochemical and morphological information
 - Requires excision of tissue

• Emerging Diagnostic Techniques

- Magnetic resonance imaging
- External ultrasound
- Positron emission tomography
- Electron beam computed tomography

Non-Invasive

- Thermography
- Elastography

• Intravascular ultrasound

- Microstructure (100 µm)
- Optical coherence tomography
 - Microstructure (10 µm)
- Fluorescence spectroscopy
 - Limited chemical information
 - Broad spectral features
- Raman Spectroscopy
 - Quantitative biochemical information
 - Morphological analysis

Coronary Artery Disease Classification: A Prospective Study

Buschman HPJ, Motz JT, et al. Cardiovascular Pathology 10(2), 59-68 (2001)

Clinical In Vivo Data: Methods

- Peripheral vascular surgery
 - Femoral bypass
 - Carotid endarterectomy
- Laser power calibration set with Teflon
 - ~100 mW (82-132mW)
- OR room lights turned off as during angioscopy
- Spectra collected for a total of 5 seconds
 - 20 accumulations of 0.25s each
 - Probe held normal to arterial wall
- Analysis of 1s and 5s data
 - Additional model components: sapphire, epoxy, water, HbO₂

Clinical In Vivo Data: Calcified Plaque

Motz JT *et al.*, J Biomed Opt **11**(2): 021003

Clinical In Vivo Data: Ruptured Plaque

Motz JT *et al.*, J Biomed Opt **11**(2): 021003

Clinical In Vivo Data: Thrombotic Plaque

Motz JT *et al.*, J Biomed Opt **11**(2): 021003

Application To Other Diseases

100 mW excitation, 1 second collection

High-Wavenumber Raman

• No fiber background

• Distinguishes cholesterol esters

- Smaller spectral region
 - Mostly limited to lipids
 - No calcification signalc

Frontier Investigations

High-Wavenumber Raman

Koljenovic S et al., J Biomed Opt 10(3): 031116 (2005)

- Raman spectroscopy 'fingerprints' molecules by characterizing interactions between photons and molecular vibrations
- Near-infrared excitation is preferred for biomedical applications
- Recent optical fiber probe developments allow accurate real-time analysis in vivo
- New areas of research are promising for widespread clinical application

- McCreery RL. Raman Spectroscopy for Chemical Analysis. Wiley-Interscience, New York, 2000.
- Ferraro JR, Nakamoto K, and Brown CW. Introductory Raman Spectroscopy 2nd ed. Academic Press, Boston, 2003.
- Hanlon EB, et al. "Prospects for in vivo Raman spectroscopy," Phys Med Biol 45: R1-R59 (2000).
- Mahadevan-Jensen A and Richards-Kortum R. "Raman spectroscopy for the detection of cancers and precancers,"J Biomed Opt 1:31-70 (1996).
- Utzinger U and Richards-Kortum R. "Fiber optic probes for biomedical spectroscopy," J Biomed Opt 8: 121-147 (2003).