

Optical Coherence Tomography

Optical Biopsy

Definition

• The *in situ* imaging of tissue microstructure with a resolution approaching that of histology, but without the need for tissue excision and processing

Optical Coherence Tomography

- Analogous to ultrasound, except that it measures intensity of back-reflected light
- Technologically different than ultrasound
 - Can achieve resolutions in the order of 1-10 µm at depths of 2-3 mm
 - Contrast provided by index of refraction mismatch in tissue
 - Interferometric depth
 localization

Optical Coherence Tomography

History

- Michelson Interferometer
 - End of 19th century
- Optical Coherence Domain Reflectrometry (OCDR)
 - Optical testing of electronics (Youngquist 1987)
 - Fault location in waveguides (1987)
 - Eye length measurement (Frecher 1988)
- Optical Coherence Tomography (OCT)
 - First applied to transparent tissues in ophthalmology (Fujimoto 1991)
 - Subsequent development of technology resulted in application in scattering tissues

(Huang et al, Science, 254, 1178-1181, 1991)

Monochromatic source

$$E_s(t-\frac{L_s}{c})$$
 $E_r(t-\frac{L_r}{c})$

Intensity at the detector

$$I_d(\tau) = I_s + I_r + 2\operatorname{Re}\left\{\left\langle E_s^*(t)E_r(t+\tau)\right\rangle\right\}$$

$$I_{d}(\tau) = I_{s} + I_{r} + 2\sqrt{I_{s}I_{r}} |V_{tc}(\tau)| \cos(2\pi f_{0}\tau) \qquad V_{tc}(t) = A(t)e^{i2\pi f_{0}\tau}$$

• Broad spectrum (low coherence) source

$$S_{\chi\chi}(f) = \int_{-\infty}^{\infty} r_{xx}(\tau) e^{-j2\pi f \tau} d\tau \qquad r_{xx}(\tau) = \mathbb{E}\Big[x(t)x^{*}(t-\tau)\Big]$$
$$V_{tc}(\tau) = \Im\{S(k)\} = \int_{0}^{\infty} S(f)\exp(-j2\pi f \tau)df$$
$$I_{d}(\Delta L) = I_{s} + I_{r} + 2\sqrt{I_{s}I_{r}}\Big[\Im\{S(k)\}\Big]\cos(k_{0}\Delta L)$$

Axial resolution

$$dz = \frac{2\ln(2)}{\pi} \frac{\lambda_o^2}{\Delta\lambda}$$

• Choice of source (λ and $\Delta\lambda$) affects axial resolution (dz) but also the penetration (μ s)

Transverse resolution

$$dx = \frac{4\lambda}{\pi} \left(\frac{f}{d}\right)$$

 Choice of focusing optics (NA=d/f) affects transverse resolution (dx) and depth of focus (b)

Transverse resolution

$$dx = \frac{4\lambda}{\pi} \left(\frac{f}{d}\right)$$

 Choice of focusing optics (NA=d/f) affects transverse resolution (dx) and depth of focus (b)

Time-Domain OCT

- Axial scanning by modifying the reference arm length in time
 - Galvanometric mirror scanning
 - < 100 A-Scans/sec
 - Simplest option but also the most slow
 - Piezoelectric fiber stretching
 - < 400 A-Scans/sec
 - Faster but introduces variable dispersion which degrades resolution
 - Helical Rotating Mirror
 - <4 000 A-Scans/sec
 - Very expensive to manufacture
 - Proprietary

Time-Domain OCT

- Optical phase delay line
 - The technique was originally developed for femtosecond pulse measurements
 - based on Fourier-transform pulse shaping techniques.
 - Relies on the basic property of the Fourier transform

$$x(t-t_0) \longleftrightarrow X(\omega) \exp\{-j\omega t_0\}$$

- phase ramp in the Fourier domain corresponds to a group delay in the time domain.
- 2-4 000 A-Scans/sec
- More complicated but faster

- Detect the spectrum and take the Fourier Transform to retrieve the A-Scan
- Detecting individual wavelengths while keeping the reference arm fixed
 - Spectrograph
 - Swept source
- Advantages
 - 20 000 200 000 A-Scans/sec
 - Improved SNR

Disadvantages

- More expensive hardware
- More demanding post-processing

 Spectral FD-OCT Reference Optical Arm Source (NIR) Spectrograph Beam CCD Splitter Sample Sample Display Arm Computer

Swept Source OCT

$$I(k) = S(k) \left| a_R \exp(j2kr) + \int_0^\infty a(z) \exp(j2k(r+n(z).z)dz) \right|^2$$

- *k*: wavenumber $k=2\pi/\lambda$
- *r*: path length in the reference arm
- r + z: path length in the object arm
- *z:* path length in the object arm, measured from the reference plane
- z_0 : offset distance between reference plane and object surface
- *n:* refractive index (n = 1 for $z < z_0$ and varying depending on the sample for longitudinal positions in the object $z > z_0$)
- a_R : reflection coefficient of the reference
- *a(z):* backscattering coefficient of the object signal, a(z) is zero for $z < z_0$
- S(k): spectral intensity distribution of the light source

$$I(k) = S(k) \left(1 + \int_{-\infty}^{\infty} \hat{a}(z) e^{-jknz} \stackrel{\text{time scale}}{(2)} dz + \frac{1}{4} \int_{-\infty}^{\infty} AC[\hat{a}(z)] e^{-jknz} \stackrel{\text{time scale}}{(2)} dz \right)$$
$$I(k) = S(k) \left(1 + \frac{1}{2} \Im_{z} \left\{ \hat{a}(z) \right\} + \frac{1}{8} \Im_{z} \left\{ AC[\hat{a}(z)] \right\} \right)$$

OCT System Design

Light Sources For OCT

- Choosing the light source
 - Four primary considerations
 - wavelength,
 - bandwidth,
 - power (in a singletransverse-mode),
 - stability (portability, ease-of-use, etc)

Dominating Loss in OCT

Light Sources For OCT

Light source spectrum

- - the temporal coherence envelope function $G(\tau)$ is related to the power spectral function S(v)through

 $G(\tau) = FT\{S(\nu)\}$

- Wiener-Kinchine theorem
- broadband source ⇔ high axial resolution

 $dz = \frac{2\ln(2)}{\pi} \frac{\lambda_o^2}{\Delta\lambda}$

27

Light Sources For OCT

Light source spectrum

- Basic property •
 - the temporal coherence envelope function $G(\tau)$ is related to the power spectral function S(v)through

- Wiener-Kinchine theorem
- broadband source ⇔ high axial resolution

Light Sources For OCT

Continuous sources

- SLD/LED/superfluorescent fibers,
- center wavelength;
 - 800 nm (SLD), 1300 nm (SLD, LED), 1550 nm, (LED, fiber),
 - power: 1 to 10 mW (c.w.) is sufficient,
- coherence length;
 - 10 to 15 µm (typically),

Pulsed lasers

- mode-locked Ti:Al2O3 (800 nm),
- 3 micron axial resolution (or less).

Scanning sources

- tune narrow-width wavelength over entire spectrum,
- resolution similar to other sources,
- Fourier Domain OCT
- advantage that fast scanning is feasible.

Imaging Devices

- Application dependent
- Ophthalmoscope
 - Most widely used OCT instrument
 - Time-domain systems:
 - Zeiss Meditec
 - Fourier-domain systems
 - Zeiss Meditec
 - Heidleberg Engineering
 - Optovue
 - Topcon
 - Some combine OCT with scanning laser ophthalmoscopy

Stratus™ HD-OCT system from Carl Zeiss Meditec

Imaging Devices

Catheters

- Diameter < 1 mm
 - Even as small as a needle
- Scanning Schemes
 - Push-Pull
 - Rotational
 - Helical (volumetric)
- Availability
 - LightLab, Inc., Helios balloon catheter
 - Custom catheters

Imaging Devices

Handheld Probes and Microscopes

- Usually employ orthogonal galvanometrically scanned mirrors
- Dermatologic, biological and research applications
- Availability
 - Thorlabs
 - Bioptigen
 - Custom

OCT System Design

33

Functional OCT

Doppler OCT

• Motion of scatterers imparts a frequency shift in the OCT signal

$$f_{d} = \frac{2v_{ref}}{\lambda_{0}} \pm \frac{2v_{sc}}{\lambda_{0}}$$

- Detection
 - Frequency analysis of OCT interferogram, or
 - Phase sensitive imaging
- Can detect micro-flows

Functional OCT

Doppler OCT

36

Functional OCT

- Constructive interference
 - Phase matched
 - Polarization matched

Birefringence

One polarization retarded more than other

Polarization Sensitive OCT

- Interference can be detected separately for orthogonal polarizations
- Depth-resolved Stokes
 parameters can be calculated
- Useful for birefringent materials
 - i.e. collagen layers

Birefringence of bovine muscle before, during and after laser exposure deBoer et al, Opt. Lett. 22, 1439-1441 (1997)

Spectroscopic OCT

- Longer wavelengths penetrate deeper
- Areas of wavelength-dependent backscattering are visible

Mechanical Properties of Tissue

- Displacement and strain maps from changing forces
- OCT Elastography
 - Elasticity measurements can be made from slight mechanical deformations of tissue
 - Correlation of successive images
 - Phase-resolved imaging
 - Depth-resolved, high resolution

OCE of breast tissue Liang et al, Optics Express, 16:11052-11065, 2008

Software and Algorithm Issues in OCT

- OCT is now a high-data-rate streaming technology
 - Example: to cover 7x20 mm of area in the esophagus requires
 - 1400 AScans x 1000 pix/Ascan x 14 bit = 78.4T bits
 - Sampled at 20 MS/s = 280 Mbit/s
- Requires very demanding post processing
 - For real-time display: 20 000 times per second
 - FFT
 - Filter
 - Scale
 - Color code

Software and Algorithm Issues in OCT

Issues still unresolved

- Optimal filtering
- Exponential decay correction
- Segmentation
- Display
- Visualization

Applications

- OCT can play a role in early diagnosis of disease and improve patient prognosis
- High resolution imaging :
 - Screening for disease where biopsy is impossible, difficult or hazardous
 - Guiding biopsies to improve sensitivity and specificity and reduce the number required
 - Non-invasive monitoring of response to therapy

Recent developments

- Increased speed (up to 200 fps)
- Improved resolution (1-5 μm)
- Compact and reliable systems

45

Ophthalmology

Diagnosis and management of ocular disorders

- Age-related macular degeneration
- Diabetic macular edema
- Macular hole
- Epiretinal membrane
- Glaucoma

Latest developments

- Combining OCT with fundus photography and scanning laser ophthalmoscopy
- 3D visualization of tissue morphology
- Ultra-high speed, ultra-high resolution OCT with adaptive optics and pancorrection

Drexler, Fujimoto, Progress in Retinal and Eye Research 27 (2008) 45–88

Ophthalmology

<u>Macular Hole</u> Drexler, Fujimoto, Progress in Retinal and Eye Research 27 (2008) 45–88

Ophthalmology

<u>3D UHR Imaging of the retina</u> with OCT fundus view

Drexler, Fujimoto, Progress in Retinal and Eye Research 27 (2008) 45–88

Ophthalmology

Imaging of individual photoreceptors

Drexler, Fujimoto, Progress in Retinal and Eye Research 27 (2008) 45–88

Cardiology

- Visualization of the vessel wall at the microscopic level
 - High resolution imaging of coronary architecture
 - Precise characterization of plaque architecture
 - Quantification of macrophages
 within the plaque
- Identification of the most common type of vulnerable plaque, the thin-cap fibroatheroma
- Monitoring stent deployment

Lipid rich plaque (OCT and IVUS) and Macrophage content

Low et al, Nature Clinical Practice, 3, 145-162, 2006

Cardiology

Stented Coronary Artery Yun, et al, Nature Medicine, 12, 1429-31, 2006

Gastroenterology

- Especially relevant application for OCT
 - High incidence
 - Clinical benefits of early detection
 - Need for pre- and post-treatment
 assessment

OCT applied to the GI

- Early detection of cancer in Barrett's esophagus patients
- Study of inflammatory bowel diseases in the colon
- Major goal = guidance of excisional biopsy
- High resolution and high speed now allow whole organ surveying

Barett;s without and with HGD

Image Size: 2.5 mm, Resolution: 10 x 20 μm Evans et al, Clin Gastro Hepatol, 4, 38-43, 2006

Gastroenterology

Volume: 7 x 20 x 1.6 mm Resolution: 6 x 8 µm) Scan Speed: 62k A-Scans/sec

Adler, et al, Optics Express, 17(2), 784-796, 2009.

Ulcerative Colitis

Adler, et al, Optics Express, 17(2), 784-796, 2009.

Dermatology

OCT can image

- The stratum corneum of glabrous skin (palmoplantar)
- The epidermis and the upper dermis
- Skin appendages and blood vessels

• Uses

- Useful in non-invasive monitoring of cutaneous inflammation, hyperkeratotic conditions and photoadaptive processes
- May be of great value, in particular in cosmetics and the pharmaceutical industry
- Could potentially allow the differentiation between benign and malignant tissues. Beyond a high resolution morphology in OCT images, tissue

Additional parameters

- Scattering coefficient
- Refractive index.
- OCT spectroscopy
- Tissue birefringence
- OCT elastography
- OCT Doppler flow
- Significant new insights in skin physiology and pathology

Normal finger skin (standard OCT and birefringes)

Pierce, et al, J Invest Dermatol 123:458 -463, 2004

Dermatology

Normal and scar finger skin (standard OCT and birefringes) Pierce, et al, J Invest Dermatol 123:458 –463, 2004

Dentistry

- Detection of hidden dentinal caries
- Quantitative monitoring of de- and remineralisation of demineralised lesions
- Visualisation of interproximal surfaces of premolars and molars
- Investigation of the effectiveness
 of restorative fillings
- Early detection of soft tissue diseases.

Molar restoration

Brandemburg, et al, Optics Communications 227 (2003) 203–211

Imaging embryonic morphology

- Advancement in the filed of genetics: genes identified, function studied
- New animal models to study gene expression or lack of expression (knockout animals)
- Study of developmental and embryologic changes require termination
- High resolution imaging for developmental biology has the potential for non-invasive:
 - Image embryonic microstructure and phenotypic expression
 - Image function and response to medications
 - Guide interventions and fetal manipulation
 - Monitor response to therapy

Xenopus Laevis morphology

Boppart, et al, DEVELOPMENTAL BIOLOGY 177, 54–63 (1996)

- Anterior eye: cornea, lens, and iris.
- Corneal thickness ~ 10 μm
- Posterior eye: ganglion cell layer, retinal neuroblasts, and choroid

Xenopus Laevis morphology

Boppart, et al, DEVELOPMENTAL BIOLOGY 177, 54–63 (1996)

Developing Embryo

Stage: 4 cell, 1 hour

Stage: Prim-5, 24 hr

Stage: 32 cell, 1.75 hour

Stage: Hatched, 48 hr

Developing Zebra fish embryo

Boppart, et al, DEVELOPMENTAL BIOLOGY 177, 54–63 (1996)

Abnormalities in Xenopus Laevis morphology Boppart, et al, DEVELOPMENTAL BIOLOGY 177, 54–63 (1996)

<u>4D imaging of mouse embryonic heart</u> Jenkins, et al, Optics Express, 14, 736-748, (2006)

Commercial OCT Systems

First commercial OCT devices

- Humphrey Systems (now a part Carl Zeiss Meditec, Inc.)
- retinal imaging
- released in 1996
- FDA approval in 2002.
- Stratus OCT[™] systems selling more than 6000 units
- Cirrus™ HD-OCT system

Commercial OCT Systems

Many more devices available now

- LightLab Imaging
- Imalux Corporation,
- ISIS Optronics GmbH
- OCT Medical Imaging, Inc
- Michelson Diagnostics, Ltd
- Novacam Technologies, Inc
- Lantis Laser Inc
- OptoVue, Inc
- Topcon Corporation
- Optol Technology
- Heidelberg Engineering
- Opthalmic Technologies, Inc
- Thorlabs, Inc
- Bioptigen, Inc

Individual OCT components

- Femtolasers Produktions
- Nippon Telegraph and Telephone Corporation
- Thorlabs, Inc
- MenloSystems GmbH

Can we "see" more?

- 1-10 µm
- Especially limited in the lateral direction
- Many cancerous/pre-cancerous changes in the µm range
 - Cell proliferation: 5 µm spacing change
 - Nucleus variations: ~2-4 µm diameter change
 - Sub-cellular and Sub-nuclear variations: < 1 µm change

Uresolvable features

- Coherent technology → speckle
- Mostly treated as noise

• Speckle

- Contains information regarding the
 - Size
 - Concentration
 - Spacing
 - Periodicity
 - Etc
 - size and distribution of scatterers
- Diagnostically useful information
- Statistical and spectral properties

Barett's Esophagus

Dysplastic Cervix

Speckle

- Signal scattered from a distribution of scatterers
- Incoherent Scattering
 - Intensity summed
- Coherent scattering
 - Field summed
 - Resulting intensity profile may not resemble scatterer distribution
 - Speckle
- Unresolvable Signal
 - Contains information regarding the number and distribution of scatterers
 - Diagnostically useful information
 - Statistical and spectral properties

- Speckle properties reflected in the spectral content
 - Optical spectrum of OCT
 - S(]) = FFT{s(t)}
- Spectral properties of backreflected signal depend on
 - Source spectrum
 - Effect of scatterers
 - Size → Spectral dependence of back-scattered light (similar to LSS)

69

Speckle Analysis

Solid Tissue Phantoms

- Polystyrene sphere solutions in a gel of acrylamide.
- Diameter 1µm, 2µm and 4µm
- $[C]_{1\mu m}$ =50 spheres, $[C]_{2\mu m}$ =5 spheres and $[C]_{4\mu m}$ =2 spheres

Data acquired with TD OCT

- Imaging Volume: 17µm x 17µm x 15µm
- Collect images
- Digitized at 6x carrier frequency
- Processed off-line

Image acquired from a phantom of 1µm and [C]=50

Pre-processing

• Normalization to RMS value of 1

Spectral estimation

- Autoregressive Power Spectral Estimation
- Effect of distribution and/or concentration
 - Can be reduced by averaging of spatially adjacent scans
 - Spectra only affected by size
- Classification
- K-Means clustering
- Scatterer size estimation

5000

Image acquired from a phantom of 1µm and [C]=50

- Autoregressive Power Spectral Estimation
 - Faster convergence from shorter signals
- Burg's method
 - Minimizing (least squares) the forward and backward prediction errors
 - Number of coefficients: 100
 - Size of window: 3001 (axial) x 25 (transverse) pixels
- Principal Component Analysis (PCA)
 - Reduction of the number of variables (35)
 - New orthogonal basis with no redundant information

Classification

- Multivariate Analysis of Variance (MANOVA)
 - New linear combinations of variables
 - Maximum separation between categories
- Discriminant based classification

Scatterer Size Estimation

- Principal Component Analysis (PCA)
- Solution to set of linear equations

$$\widetilde{P}_{xx}\widetilde{A} = \widetilde{d}$$
$$\widetilde{A} = \widetilde{P}_{xx}^{-1}\widetilde{d}_{training}$$

Speckle Analysis

- Information can be extracted from spectrum
 - Classification of images based on scatterer size
 - Sensitivity and specificity: 85-99 %
 - Scatterer size estimation from solutions of linear equations
 - Mean error: 16.5%
 - Require a priori information and training

Intensity Image of Microspheres Embedded in Acrylamide

Classification Results Overlayed on Intensity Image

1 x 3 mm (17 x 20 µm)

Speckle Analysis

- K-Means clustering
- Divide the data into a predefined number of clusters (groups)
 - Minimize the distance from the centroid of each group
 - Assumes each object's attributes are coordinates in multidimensional space
 - Iteratively finds centroids and reassigning the clusters to minimize:

$$V = \sum_{i=1}^{k} \sum_{x_i \in S} \left| x_j - \mu_i \right|^2$$

 Advantage¹ №^eaⁱ-priori information required

Clustering areas of same intensity but different size scatterers

Scatterer Diam.	1 µm	2 µm	4 µm
Sensitivity	95.11	97.11	92.56
Specificity	99.44	99.44	99.44

Intensity image of microspheres

1 x 3 mm (15 x 30 µm)

Speckle Analysis

Intensity image of nerve

Clustering image of nerve

Intensity image of tadpole

Clustering image of tadpole

1.5 x 1.95 mm (15 x 30 μm)

Conclusions

- OCT has shown great promise as a diagnostic tool
- UHR and ultra high speed systems can provide real time, dynamic and diagnostically relevant information
- There is still a lot to be done to confirm benefit to the patients
 - Perform clinical studies
 - Form standards and consensus
 - Prove benefit to patients