

Φασματοσκοπία Ράμαν (Raman Spectroscopy)

Professor Sir C.V. Raman

Εισαγωγή

A New Type of Secondary Radiation

C. V. Raman and K. S. Krishnan, Nature, 121(3048): 501-502, March 31, 1928

Βραβείο Nobel στη Φυσική 1930

" για το έργο του σχετικά με τη σκέδαση του φωτός και για την ανακάλυψη του φαινομένου που φέρει το όνομά του "

1888-1970

Τα πρώτα φάσματα Raman

Bangalore, India

First Raman spectra photographea

• Φαινόμενο Raman → Ανελαστική (inelastic) σκέδαση

Μερικές δονήσεις στο Βενζόλιο (Benzene)

• Φάσμα Raman της Χοληστερίνης (Cholesterol)

Hanlon et al. "Prospects for in vivo Raman spectroscopy," Phys Med Biol 45: R1 (2000) 5

Εισαγωγή

- Φάσματα Raman → "Δακτυλικό
- "Δακτυλικό αποτύπωμα" ενός μορίου
- Τα φάσματα Raman
 - Είναι χαρακτηριστικά του μορίου
 - Περιέχουν πληροφορίες για τα δονητικά επίπεδα του μορίου
 - Έχουν αιχμηρές κορυφές που επιτρέπουν την αναγνώριση ενός μορίου από το φάσμα του

Examples of analytes found in blood which are quantifiable with Raman spectroscopy

Εισαγωγή

Εξέλιξη της φασματοσκοπίας Raman

- **1928~1960**
 - Μικρή πειραματική πρόοδος
- 1960
 - Εφεύρεση του λέιζερ επεκτείνει το πεδίο πειραματικών εφαρμογών
- 1980s: ραγδαία τεχνολογική πρόοδος
 - Φασματοσκοπία μετασχηματισμού Fourier
 - Ανιχνευτές Charge Coupled Device (CCD)
 - Ολογραφικά και διηλεκτρικά φίλτρα
 - Λέιζερ υπέρυθρης (NIR) εκπομπής

• Τέλος 1980s→1990s

- Βιοιατρικές εφαρμογές
- Προηγμένοι φασματογράφοι
- 2000 →
 - Εφαρμογές σε ζώντες οργανισμούς (In vivo)
 - Καθετήρες οπτικών ινών
 - Μη-γραμμική (Non-linear) φασματογραφία

Εφαρμογές της φασματογραφίας Raman

- Δομική χημεία
- Μελέτη στερεάς κατάστασης
- Αναλυτική χημεία
- Εφαρμοσμένη ανάλυση υλικών
- Έλεγχος διαδικασιών
- Μικρο-φασματογραφία / απεικόνιση
- Παρακολούθηση του περιβάλλοντος
- Βιοϊατρική

Εισαγωγή

Ιστορία των Βιολογικών Εφαρμογών Raman

- 1970: Οι Lord και Υυ καταγράφουν το πρώτο φάσμα από πρωτεΐνη λυσοζύμη (lysozyme) με λέιζερ HeNe
- Εξέλιξη σε διέγερση NIR
 - Μειωμένος φθορισμός, μεγαλύτερο βάθος διείσδυσης (mm)
- 1980s:
 - FT Raman με Nd:YAG and ψυχόμενους ανιχνευτές InGaAs (μεγάλοι χρόνοι συλλογής (30 min))
 - Clarke (1987-1988): ορατή διέγερση του αρτηριακού υδροξυαπατίτη ασβεστίου και καροτενοειδών
- 1990s, πρόοδος σε:
 - Λέιζερ, Ανιχνευτές, φασματόμετρα διασποράς, Φίλτρα
 - Χημειομετρία

- Διαγνωστικά Πλεονεκτήματα της
 Φασματοσκοπίας Raman
 - Επιλογή μήκους κύματος (από υπεριώδες μέχρι IR)
 - Δεν απαιτείται βιοψία
 - Άμεση μέτρηση μορίων
 - μικρές συγκεντρώσεις
 - χημική σύνθεση
 - μορφολογική ανάλυση
 - Ποσοτική ανάλυση
 - In vivo διάγνωση

- Αλληλεπίδραση ηλεκτρικών πεδίων προσπίπτοντος φωτονίου και μορίου
 - Το ηλεκτρικό πεδίο ταλαντώνεται σε συχνότητα f_i: $E_i = E_0 \cos(2\pi f_i t)$
 - Προκαλεί μοριακό ηλεκτρικό δίπολο (p):

$$\vec{p} = \alpha \vec{E}$$

- Ανάλογο με τη μοριακή πολωσιμότητα, α
 - ευκολία με την οποία το ηλεκτρόνιο νέφος γύρω από ένα μόριο μπορεί να παραμορφωθεί
- Η πόλωση προκαλεί πυρηνική μετατόπιση $q = q_0 \cos(2\pi v_R t)$

 Για μικρές παραμορφώσεις, η πολωσιμότητα είναι γραμμικά ανάλογη προς τη μετατόπιση

$$\alpha = \alpha_0 + \left(\frac{\partial \alpha}{\partial q}\right)_0 q_0 + \dots$$

• **A moti Stokes** Rayleigh Scattering $\vec{p} = \alpha \vec{E} = \alpha_0 E_0 \cos(2\pi v_i t) + \frac{1}{2} E_0 q_0 \left(\frac{\partial \alpha}{\partial q}\right)_0 \left\{ \cos\left[2\pi (v_i + v_R)t\right] + \cos\left[2\pi (v_i - v_R)t\right] \right\}$

Φωτο-μοριακή Αλληλεπίδραση

Χαρακτηριστικά της Σκέδασης Raman

 Όπως και άλλα σκεδαστικά φαινόμενα, παρουσιάζεται υπό μορφή διατομής (cross-section, σ [cm²]), ή πιθανότητας σκέδασης:

 $I = I_0 \sigma \rho l$

- ρ: συγκέντρωση των μορίων, Ι: μήκος διαδρομής (pathlength)
- Πολύ αδύναμο φαινόμενο
 - Μόνο 1 στα 10⁷ φωτόνια σκεδάζεται με Raman
 - Ελαστική σκέδαση NIR σε ιστούς: $1/\mu_s \approx 1mm$
 - Απορρόφηση NIR σε ιστούς:
 - Απορρόφηση Κόκκινου σε ιστούς ή νερό: 1/ $\mu_a \approx 5m$
 - Σκέδαση Raman σε ιστούς ή νερό:
- Πραγματική σκεδαστική διαδικασία
 - Η εικονική κατάσταση (virtual state) είναι μια βραχύβια παραμόρφωση του νέφους ηλεκτρονίων που δημιουργεί μοριακές δονήσεις
 - τ < 10⁻¹⁴ s
- Οι ισχυροί σκεδαστές Raman έχουν διανεμημένα σύννεφα ηλεκτρονίων
 - C=C
 - π -bonds

- $1/\mu_a \approx 10cm$
 - $1/\mu_R^a \approx 3km$

 Οι φασματοσκοπικές συχνότητες αναφέρονται σε κυματαριθμούς [cm⁻¹], ανάλογους με την ενέργεια μεταπτώσεως:

$$\tilde{\nu} = \frac{E}{hc} = \frac{f}{c} = \frac{1}{\lambda} \qquad \qquad \boxed{\begin{array}{c} E = hf \\ c = \lambda f \end{array}}$$

- Οι συχνότητες Raman είναι ανεξάρτητες από το μήκος κύματος διέγερσης μια και αναφέρονται ως σχετική διαφορά ενέργειας
 - Κυματαρυθμοί σε σχέση με τη διέγερση:

$$\tilde{\nu}_{R} = \frac{1}{\lambda_{i}} - \frac{1}{\lambda_{R}} \qquad \qquad \delta \lambda = \delta \nu \lambda_{0}^{2}$$

• Παράδειγμα

- Διέγερση NIR στα 830 nm:
- Τυπική μετατόπιση Raman:
 - λ_R = 905 nm

- 12,048 cm⁻¹
 - ~1000 cm⁻¹
- Πλάτος γραμμής από Raman βιολογικών μορίων
 ~10 cm⁻¹ FWHM
 - $\delta \lambda_R = 0.69 \text{ nm}$

UV, Ορατή, και NIR Διέγερση

• Επιλογή Μήκους Κύματος

 Τα σήματα Raman έχουν σταθερή μετατόπιση → μπορούμε να μεταβάλουμε το μήκος κύματος διέγερσης και να πάρουμε τις ίδιες πληροφορίες

• UV

- + Ενίσχυση από συντονισμό (Resonance)
- + λ_R<λ_F → ο φθορισμός μπορεί να φιλτραριστεί
- · φωτο-βλάβες, μικρή διείσδυση
- Ορατό
 - + Raman $\propto \lambda^{-4} \rightarrow \uparrow I_R$ vs. IR
 - ο φθορισμός επικαλύπτει το Raman
- NIR:
 - + Χαμηλότερος φθορισμός
 - + Μεγαλύτερη διείσδυση
 - - Raman $\infty \lambda$ -4 $\rightarrow \downarrow$ IR vs. Vis

UV Resonant Excitation < 300 nm Visible Excitation 300-700 nm (Fluorescence) Near IR Excitation > 700 nm

UV, Ορατή, και NIR Διέγερση

Εφαρμογές

- UVRR
 - Βιολογικά μακρομόρια: νουκλεϊκά οξέα, πρωτεΐνες, λιπίδια
 - Οργανίδια, κύτταρα, μικροοργανισμούς, βακτηρίδια, νευροτοξίνες, φυτοπλαγκτόν, ιοί
 - Κλινικά περιορισμένη: φωτομεταλλαξιογόνο
- Ορατή
 - Κύτταρα (ελάχιστος φθορισμός)
 - DNA στα χρωμοσώματα, χρωστικές ουσίες σε κοκκιοκύτταρα και λεμφοκύτταρα, ερυθρά αιμοσφαίρια, ηπατοκύτταρα
 - Πρώτη μελέτες σε αρτηρία: υδροξυαπατίτης και καροτενοειδή (Clarke 1987, 1988)
- NIR
 - Hirschfeld & Chase, 1986: FT-Raman
 - Ιστοί: αρτηρία, τράχηλος της μήτρας, δέρμα, μαστός, αίμα, γαστρεντερικοί, οισοφάγος, όγκοι του εγκεφάλου, νόσος Alzheimer, προστάτης, οστά

UV, Ορατή, και NIR Διέγερση

- Φασματοσκοπικά Πλεονεκτήματα της **NIR Raman**
 - Στενές ζώνες δόνησης, συγκεκριμένες χημικά και πλούσιες σε πληροφορίες
 - Ευελιξία στην επιλογή μήκους κύματος διέγερσης
 - Ελαχιστοποίηση του ανεπιθύμητου φθορισμού των ιστών
 - ε (10⁻³M⁻¹cm⁻¹) • Βελτιστοποίηση βάθους δειγματοληψίας
 - Χρήση τεχνολογίας CCD

Τρέχουσα Τεχνολογία Raman

- Λέιζερ Διόδων (Laser diodes)
 - Συνεπτυγμένο μέγεθος (Compact), Σταθερές λεπτές γραμμές, NIR
- Φασματογράφοι ψηλής απόδοσης (f/1.8)
- Ολογραφικά Στοιχεία
 - Ζωνοπερατά (Bandpass) φίλτρα (αφαιρούν αυτογενείς (spontaneous) εκπομπές του υλικού του λέιζερ)
 - Φίλτρα αποκοπής (Notch) (10⁶ απόρριψη του λέιζερ με Rayleigh σκέδαση)
 - Πλέγματα μετάδοσης με μεγάλη επιφάνεια και ψηλή απόδοση
- Ανιχνευτές CCD
 - Ψηλή κβαντική απόδοση (QE)
 - Χαμηλός θόρυβος (ψύξη με LN₂)
 - Ανίχνευση πολλαπλών καναλλιών
- Καθετήρες οπτικών ινών ψηλής απόδοσης με φίλτρα
- Τα συστήματα NIR FT και PMT δεν χρησιμοποιούνται πια

Κλινικά Συστήματα Raman

Πρόβλημα

- Εκπομπή από τις
 Οπτικές Ίνες
 - Αλλοιώνει το σήμα
 - Προσθέτει θόρυβο βολής (shot-noise)
- Χαμηλή συλλογή σήματος
 - Το φαινόμενο Raman είναι αδύνατο
 - Οι ιστοί σκεδάζουν πολύ

Fiber background $\propto NA^2$

- Μείωση της εκπομπής από τις ίνες
 - Εκπομπή εξίσου στις ίνες διέγερσης και συλλογής
 - Λέιζερ διέγερσης → Σκέδαση Raman από τους ιστούς
 - Σκέδαση Raman από ίνα, μεταφέρεται από την ίνα διέγερσης*
 - Σκέδαση Raman από την ίνα σκεδάζεται ελαστικά από τον ιστό (και συλλέγεται από την ίνα συλλογής)
 - Λέιζερ διέγερσης σκεδάζεται ελαστικά (και συλλέγεται από την ίνα συλλογής)
 - Σκέδαση Raman από την ίνα συλλογής*

From McCreery RL "Raman Spectroscopy for Chemical Analysis," 2000.

• Μετάδοση Φίλτρων

Πρόβλημα

- Εκπομπή από τις Οπτικές Ίνες
 - Αλλοιώνει το σήμα
 - Προσθέτει θόρυβο βολής (shot-noise)

Χαμηλή συλλογή σήματος

- Το φαινόμενο Raman είναι αδύνατο
- Οι ιστοί σκεδάζουν πολύ

• Λύσεις

• Μικρο-οπτικά φίλτρα

- βραχυ-περατό φίλτρο διέγερσης
- Μακρυ-περατό φίλτρο συλλογής

Βελτιστοποίηση της οπτικής διάταξης

- Χαρακτηρισμός της κατανομής του φωτός Raman στους ιστούς
- Καθορισμός βέλτιστης γεωμετρίας
- Σχεδιασμός οπτικής συλλογής

Στόχοι Σχεδιασμού

- Περιορισμένη γεωμετρία για κλινική χρήση
 - Σύνολο διαμέτρου ~ 2 χιλιοστά για πρόσβαση σε στεφανιαίες αρτηρίες
 - Εύκαμπτος
 - Ικανός να αντέχει αποστείρωση
- Σχεδιασμένος να λειτουργεί με 830 nm διέγερση
- Ψηλής απόδοσης
 - Συσσώρευσης δεδομένων σε 1 ή 2 δευτερόλεπτα
 - Ασφαλή επίπεδα ισχύος
 - SNR παρόμοια με εργαστηριακά συστήματα Raman
 - Ακριβής εφαρμογή μοντέλων

- •Η επιβάρυνσης από τις καρδιαγγειακές παθήσεις †
 - 71.300.000 άνθρωποι στις Ηνωμένες Πολιτείες πάσχουν από ΚΑΠ
 - 910.600 θάνατοι ετησίως
 - 1 στους 2,7 θανάτους
- Στεφανιαία νόσος στοιχίζει 653.000 ζωές ετησίως
 - 1 στους 5 θανάτους
 - Οικονομικό κόστος: μεγαλύτερο από 142,5 δισ. δολάρια

• Ανατομία της αρτηρίας

T: thrombus NC: necrotic core

- Μερικές Τρέχουσες Προκλήσεις στην
 Καρδιολογία
 - Αξιολόγηση και ανάπτυξη θεραπευτικών μεθόδων
 - Αιτιολογία της αθηροσκλήρωσης
 - Μηχανισμοί της εκ νέου στένωσης
 - Μετά την αγγειοπλαστική
 - Αγγειοπάθεια μεταμοσχεύσεων
 - Ανίχνευση των ευάλωτων αθηρωματικών πλακών
 - Πρόβλεψη / πρόληψη των καρδιακών επεισοδίων

Ευάλωτες αθηρωματικές πλάκες

- Ευθύνονται για την πλειοψηφία του αιφνίδιου καρδιακού θανάτου
- Συχνά συμβαίνουν σε κλινικά ασυμπτωματικά αγγεία
 - <50% στένωση
- Δεν υπάρχουν αποτελεσματικές θεραπείες
- Χαρακτηρίζονται από:
 - Βιοχημικές μεταβολές
 - Αφροκύτταρα (Foam cells)
 - Συσώρρευση λιπιδίων (Lipid pool)
 - Φλεγμονώδη κύτταρα
 - Λεπτό ινώδες κάλυμμα (<65 μm)
- Σήμερα είναι μη ανιχνεύσιμα

Συνήθεις διαγνωστικές τεχνικές

- Αγγειογραφία
 - Σοβαρότητα της στένωσης, θρόμβωση, πυκνή ασβεστοποίηση
 - Δεν παρέχει βιοχημικές πληροφορίες
- Αγγειοσκοπία (Angioscopy)
 - Χαρακτηριστικά της επιφάνειας της πλάκας, συμπεριλαμβανομένου του χρώματος
 - Δεν υπάρχουν πληροφορίες των υπο-επιφανειακών χαρακτηριστικών
- Ιστοπαθολογία
 - Βιοχημικές και μορφολογικές πληροφορίες
 - Απαιτεί εκτομή ιστού

Νέες διαγνωστικές τεχνικές

- Μαγνητική τομογραφία
- Εξωτερικό υπερηχογράφημα
- Τομογραφία εκπομπής ποζιτρονίων
- Υπολογιστική τομογραφία δέσμης ηλεκτρονίων
- Θερμογραφία
- Ελαστογραφία

Μη-Επεμβατικές

- Ενδο-αγγειακό υπερηχογράφημα
 - Μικροδομή (100 μm)
- Οπτική τομογραφία συνοχής
 - Μικροδομή (10 μm)
- Φασματοσκοπία φθορισμού
 - Περιορισμένες χημικές πληροφορίες
 - Πλατιά φασματικά χαρακτηριστικά
- Φασματοσκοπία Raman
 - Ποσοτικά στοιχεία βιοχημικών
 - Μορφολογική ανάλυση

• Ασβέστωση στη Στεφανιαία Νόσο: Μια προγνωστική (Prospective) Μελέτη

Buschman HPJ, Motz JT, et al. Cardiovascular Pathology 10(2), 59-68 (2001)

In Vivo Κλινικά Δεδομένα: Ασβεστωμένη (Calcified) πλάκα

In Vivo Κλινικά Δεδομένα: Ρήξη (Rupture) πλάκας

Motz JT *et al.*, J Biomed Opt **11**(2): 021003

In Vivo Κλινικά Δεδομένα: Θρόμβωση (thrombosis) πλάκας

Motz JT *et al.*, J Biomed Opt **11**(2): 021003

Εφαρμογές σε άλλες ασθένειες

100 mW excitation, 1 second collection

High-Wavenumber Raman

• Διακρίνει εστέρες της χολιστερίνης

www.sigma.com

40

Δεν υπάρχει σήμα ασβέστωσης

Μελλοντικές Κατευθύνσεις

• High-Wavenumber Raman

Koljenovic S et al., J Biomed Opt **10**(3): 031116 (2005)

- Μοριακά "δακτυλικά αποτυπώματα"
 φασματοσκοπίας Raman από τις
 αλληλεπιδράσεις μεταξύ φωτονίων και μοριακών
 δονήσεων
- Εγγύς υπέρυθρη διέγερση προτιμάται για βιοϊατρικές εφαρμογές
- Πρόσφατες εξελίξεις στους καθετήρες οπτικών ινών επιτρέπουν την ακριβή και σε πραγματικό χρόνο ανάλυση in vivo
- Νέοι τομείς της έρευνας είναι ελπιδοφόροι για ευρεία κλινική εφαρμογή

- McCreery RL. Raman Spectroscopy for Chemical Analysis. Wiley-Interscience, New York, 2000.
- Ferraro JR, Nakamoto K, and Brown CW. Introductory Raman Spectroscopy 2nd ed. Academic Press, Boston, 2003.
- Hanlon EB, et al. "Prospects for in vivo Raman spectroscopy," Phys Med Biol 45: R1-R59 (2000).
- Mahadevan-Jensen A and Richards-Kortum R. "Raman spectroscopy for the detection of cancers and precancers,"J Biomed Opt 1:31-70 (1996).
- Utzinger U and Richards-Kortum R. "Fiber optic probes for biomedical spectroscopy," J Biomed Opt 8: 121-147 (2003).