University of Cyprus Biomedical Imaging and Applied Optics

Optical Coherence Tomography Οπτική Τομογραφία Συνοχής

Οπτική Βιοψία (Optical Biopsy)

Ορισμός

 Η επί τόπια (in situ) απεικόνιση της μικροδομής του ιστού με μια ευκρίνεια που πλησιάζει αυτή της ιστολογίας, αλλά χωρίς την ανάγκη για την αφαίρεση ιστών και ιστοπαθολογική επεξεργασία

Οπτικά Τομογραφία Συνοχής (ΟCT)

- Ανάλογη με τους υπέρηχους αλλά μετρά την ένταση του οπισθοσκεδαζόμενου (backscattered) φωτός
- Τεχνολογικά διαφορετική από τους υπέρηχους
 - Μπορεί να πετύχει ευκρίνεια της τάξης του of 1-10 μm σε βάθος 2-3 mm
 - Η αντίθεση είναι αποτέλεσμα διαφορών στον δείκτη διάθλασης των διαφόρων ιστών/κυττάρων/οργανιδίων κλπ
 - Καθορισμός του βάθους συμβολομετρικά (Interferometric)

Οπτικά Τομογραφία Συνοχής (ΟCT)

Ιστορία

- Συμβολόμετρο (Interferometer) Michelson
 - Τέλος19th αιώνα
- Οπτικά Σύμφωνη Ανακλομετρία (Optical Coherence Domain Reflectrometry - OCDR)
 - Οπτικός έλεγχος ηλεκτρονικών (Youngquist 1987)
 - Εντοπισμός βλαβών σε κυματοδηγούς (waveguides) (1987)
 - Μέτρηση του μήκους του ματιού (Frecher 1988)
- Οπτικά Τομογραφία Συνοχής (OCT)
 - Πρώτη εφαρμόστηκε σε διαφανείς ιστούς στην οφθαλμολογία (Fujimoto 1991)
 - Η ανάπτυξη της τεχνολογίας οδήγησε στην εφαρμογή σε ιστούς με ψηλή σκέδαση

(Huang et al, Science, 254, 1178-1181, 1991)

Αρχές ΟCΤ

OCT Principles

7

Μονοχρωματική Πηγή

$$E_s(t-\frac{L_s}{c})$$
 $E_r(t-\frac{L_r}{c})$

• Ένταση στον ανιχνευτή

$$I_d(\tau) = I_s + I_r + 2\operatorname{Re}\left\{\left\langle E_s^*(t)E_r(t+\tau)\right\rangle\right\}$$

$$I_{d}(\tau) = I_{s} + I_{r} + 2\sqrt{I_{s}I_{r}} |V_{tc}(\tau)| \cos(2\pi f_{0}\tau) \qquad V_{tc}(t) = A(t)e^{i2\pi f_{0}\tau}$$

Πηγή ευρέους φάσματος (χαμηλής συνοχής (low coherence))

$$S_{\chi\chi}(f) = \int_{-\infty}^{\infty} r_{\chi\chi}(\tau) e^{-j2\pi f \tau} d\tau \qquad r_{\chi\chi}(\tau) = \mathbb{E} \Big[x(t) x^*(t-\tau) \Big]$$
$$V_{tc}(\tau) = \Im \Big\{ S(k) \Big\} = \int_{0}^{\infty} S(f) \exp(-j2\pi f \tau) df$$
$$I_{d}(\Delta L) = I_{s} + I_{r} + 2\sqrt{I_{s}I_{r}} \Big| \Im \big\{ S(k) \big\} \Big| \cos(k_{0}\Delta L)$$

Αξονική (Axial) ευκρίνεια

$$dz = \frac{2\ln(2)}{\pi} \frac{\lambda_o^2}{\Delta\lambda}$$

 Η επιλογή της πηγής (λ και Δλ) επηρεάζει την αξονική ευκρίνεια (dz) αλλά και τη διείσδυση (μ_s)

 Εγκάρσια (Transverse) ευκρίνεια

$$dx = \frac{4\lambda}{\pi} \left(\frac{f}{d}\right)$$

 Η επιλογή των εστιάζοντων οπτικών στοιχείων (NA=d/f) επηρεάζει την εγκάρσια ευκρίνεια (dx) και το βάθος εστίασης(b)

 Εγκάρσια (Transverse) ευκρίνεια

$$dx = \frac{4\lambda}{\pi} \left(\frac{f}{d}\right)$$

 Η επιλογή των εστιάζοντων οπτικών στοιχείων (NA=d/f) επηρεάζει την εγκάρσια ευκρίνεια (dx) και το βάθος εστίασης(b)

ΟΟΤ στο Πεδίο του Χρόνου

- Αξονική σάρωση με μεταβολή του μήκους του βραχίονα αναφοράς (reference) στο χρόνο
 - Σάρωση με γαλβανομετρικό κάτοπτρο
 - < 100 A-Scans/sec</p>
 - Η πιο απλή αλλά και η πιο αργή λύση
 - Πιεζοηλεκτρική (Piezoelectric) έκταση οπτικών ινών
 - < 400 A-Scans/sec
 - Ταχύτερη αλλά εισάγει μεταβλητή διασπορά η οποία χειροτερευει την ευκρίνεια
 - Ελικοειδές Περιστρεφόμενο Κάτοπτρο
 - <4 000 A-Scans/sec
 - Πολύ ακριβή η παραγωγή
 - Ιδιόκτητο (Proprietary)

ΟCΤ στο Πεδίο του Χρόνου

- Γραμμή Οπτικής Καθυστέρησης (Optical phase delay line)
 - Η τεχνική αυτή αναπτύχθηκε αρχικά για τις μετρήσεις παλμών fsec
 - Βασίζεται σε τεχνικές
 διαμόρφωσης παλμών με μετασχηματισμός Fourier.
 - Στηρίζεται στην βασική ιδιότητα του μετασχηματισμού Fourier

$$x(t-t_0) \longleftrightarrow X(\omega) \exp\{-j\omega t_0\}$$

- Μεταβολή φάσης (ramp) στο πεδίο Fourier αντιστοιχεί σε ομαδική καθυστέρηση (group delay) στο πεδίο του χρόνου.
- 2-4 000 A-Scans/sec
- Πιο περίπλοκη αλλά πιο γρήγορη

- Ανίχνευση του φάσματος και μετασχηματισμός Fourier Transform για ανάκτηση της γραμμής (A-Scan)
- Μέτρηση έντασης στα διάφορα μήκη κύματος ενώ ο βραχίονας αναφορά (reference arm) παραμένει σταθερός
 - Φασματογράφος (Spectrograph)
 - Πηγή σάρωσης (Swept source)

• Προτερήματα

- 20 000 200 000 A-Scans/sec
- Βελτιωμένος SNR

• Μειονεκτήματα

- Πιο δαπανηρό υλικό (hardware)
- Πιο απαιτητική η επεξεργασία μετά την απόκτηση του σήματος

• Φασματική (Spectral) FD-OCT

• ΟCT με Πηγή Σάρωσης (Swept Source)

- $I(k) = S(k) \left| a_R \exp(j2kr) + \int_0^\infty a(z) \exp(j2k(r+n(z).z)) dz \right|^2$
 - *k:* wavenumber $k=2\pi/\lambda$
 - *r*: path length in the reference arm
 - r + z: path length in the object arm
 - *z:* path length in the object arm, measured from the reference plane
 - z_0 : offset distance between reference plane and object surface
 - *n:* refractive index (n = 1 for $z < z_0$ and varying depending on the sample for longitudinal positions in the object $z > z_0$)
 - a_R : reflection coefficient of the reference
 - *a*(*z*): backscattering coefficient of the object signal, a(z) is zero for $z < z_0$
 - S(k): spectral intensity distribution of the light source

$$I(k) = S(k) \left(1 + \int_{-\infty}^{\infty} \hat{a}(z) e^{-jknz} (2) dz + \frac{1}{4} \int_{-\infty}^{\infty} AC[\hat{a}(z)] e^{-jknz} (2) dz \right)$$
$$I(k) = S(k) \left(1 + \frac{1}{2} \Im_{z} \left\{ \hat{a}(z) \right\} + \frac{1}{8} \Im_{z} \left\{ AC[\hat{a}(z)] \right\} \right)$$

Σχεδιασμός Συστήματος ΟCT

Scattering Coefficient (rel)

• Επιλογή Πηγής

Πηγές για ΟCT

- Τέσσερεις κύριοι παράγοντες
 - Μήκος κύματος (wavelength)
 - Εύρος φάσματος (spectral bandwidth)
 - Ισχύς (power) εγκάρσια μονοτροπική (singletransverse-mode)
 - Σταθερότητα (φορητότητα, ευκολία στη χρήση, κλπ)

Dominating Loss in OCT

Πηγές για ΟCT

• Φάσμα Πηγής

- Βασική Αρχή
 - Η περιβάλλουσα (envelope) της χρονικής συνάρτησης συνοχής g(t) συνδέεται με την φασματική συνάρτηση ισχύος S(n) με
 - $g(t) = FT{S(n)}$
 - Θεώρημα Wiener-Kinchine
 - Πηγή με ευρύ φάσμα ⇔ καλύτερη αξονική ευκρίνεια

Πηγές για ΟCT

• Φάσμα Πηγής

- Βασική Αρχή
 - Η περιβάλλουσα (envelope) της χρονικής συνάρτησης συνοχής g(t) συνδέεται με την φασματική συνάρτηση ισχύος S(n) με
 - $g(t) = FT{S(n)}$
 - Θεώρημα Wiener-Kinchine
 - Πηγή με ευρύ φάσμα ⇔ καλύτερη αξονική ευκρίνεια

 $dz = \frac{2\ln(2)}{\pi} \frac{\lambda_o^2}{\Delta\lambda}$

Πηγές για ΟCT

- Συνεχείς (Continuous) πηγές
 - SLD/LED/superfluorescent fibers
 - Κεντρικό μήκος κύματος
 - 800 nm (SLD), 1300 nm (SLD, LED), 1550 nm, (LED, fiber),
 - Ισχύς: 1 ως 10 mW (c.w.) είναι αρκετή
 - Μήκος συμφωνίας(coherence length)
 - 10 ως 15 μm (σύνηθες)
- Παλμικά (Pulsed) λέιζερ
 - Ti:Al2O3 (800 nm) με κλείδωμα ρυθμού (mode-locked)
 - 3 μm αξονική ευκρίνεια (ή και λιγότερο)
- Πηγές Σάρωσης (Scanning sources)
 - Συντονίζουν (tune) ένα μήκος κύματος (μικρό πλάτος) σε όλο το εύρος του φάσματος
 - Ευκρίνεια παρόμοια με άλλες πηγές
 - OCT στο πεδίο Fourier
 - Το προτέρημα τους είναι ότι επιτρέπου πολύ γρήγορη απεικόνιση

Όργανα Απεικόνισης

- Εξαρτάται από την εφαρμογή
- Οφθαλμοσκόπιο (Ophthalmoscope)
 - Το πιο ευρέος χρησιμοποιούμενο όργανο ΟCT
 - Στο πεδίο του χρόνου:
 - Zeiss Meditec
 - Στο πεδίο Fourier:
 - Zeiss Meditec
 - Heidleberg Engineering
 - Optovue
 - Topcon
 - Κάποια συστήματα OCT συνδυάζονται με οφθαλμοσκόπηση σάρωσης λέιζερ (scanning laser ophthalmoscopy)

Όργανα Απεικόνισης

• Καθετήρες (Catheters)

- Διάμετρος < 1 mm
 - Μικρό όσο και μια βελόνα
- Μέθοδοι σάρωσης
 - Ώθηση-Έλξη (Push-Pull)
 - Περιστροφική (Rotational)
 - Ελικοειδής (Helical) ογκομετρική (volumetric)
 - Μικρο ηλεκτρομηχανικά συστήματα (MEMS)
- Διαθεσιμότητα
 - LightLab, Inc., Helios balloon catheter
 - Santec, MEMS-based
 - Κατά παραγγελία (Custom)

Όργανα Απεικόνισης

- Φορητές Κεφαλές και μικροσκόπια
 - Συνήθως χρησιμοποιούν ορθογώνια γαλβανόμετρα (galvanometers) με καθρέφτες για σάρωση
 - Δερματολογικές, βιολογικές και ερευνητικές εφαρμογές
 - Διαθεσιμότητα
 - Thorlabs
 - Bioptigen
 - Κατά παραγγελία

Θέματα Λογισμικού και Αλγορίθμων

- Η ΟCT είναι τώρα τεχνολογία συνεχούς ροής δεδομένων (streaming) ψηλού ρυθμού (high-data-rate)
 - Παράδειγμα:
 - Για να καλύψουμε περιοχή 7x20 mm στον εισοφάγο χρειάζονται
 - 1400 AScans x 1000 pix/Ascan x 14 bit = 78.4T bits
 - Ψηφιοποίηση στα 20 MS/s = 280 Mbit/s

• Πολύ απαιτητική μετά-επεξεργασία

- Για απεικόνιση σε πραγματικό χρόνο : 20 000 φορές ανά δευτερόλεπτο
 - FFT
 - Παρεμβολή (interpolation) και Φίλτρο
 - Κλίμακα και Χρωματική κωδικοποίηση

Θέματα Λογισμικού και Αλγορίθμων

- Προβλήματα που παραμένουν άλυτα
 - Βέλτιστο φιλτράρισμα
 - Διόρθωση εκθετική ς μείωσης
 - Κατάτμηση
 - Εμφάνιση (Display)
 - Οπτικοποίηση (Visualization)

Λειτουργική (Functional) OCT

• Doppler OCT

 Κίνηση σκεδαστών προσδίδει μια μετατόπιση συχνότητας στο σήμα OCT

- Ανίχνευση
 - Ανάλυση συχνότητας του συμβολογράμματος της OCT, ή
 - Απεικόνιση με ευαισθησία φάσης
- Μπορεί να ανιχνεύσει πολύ μικρές ροές

• Doppler OCT

Retinal blood vessel flow Letigeb et al, Opt. Express 11, 3116-3121 (2003)

OCT Ευαίσθητη στην Πόλωση (Polarization Sensitive)

- Ενισχυτική Συμβολή (Constructive interference)
 - Συμφωνία φάσης
 - Συμφωνία πόλωσης
- Διπλή διάθλαση (Birefringence)
 - Μια πόλωση καθυστερεί περισσότερο από την άλλη
- ΟCΤ Ευαίσθητη στην Πόλωση
 - Η συμβολή μπορεί να καταγραφεί σε κάθετους άξονες πόλωσης
 - Μπορούμε να υπολογίσουμε τις παραμέτρους Stokes σαν συνάρτηση του βάθους
 - Χρήσιμο για υλικά με διπλή διάθλαση
 - Π.χ. στρώματα κολλαγόνου

OCT Ευαίσθητη στην Πόλωση (Polarization Sensitive)

Birefringence of bovine muscle before, during and after laser exposure

deBoer et al, Opt. Lett. 22, 1439-1441 (1997)

Φασματοσκοπική ΟCT

- Μεγαλύτερα μήκη κύματος διεισδύουν βαθύτερα
- Φαίνονται περιοχές όπου η οπισθοσκέδαση είναι συνάρτηση του μήκους κύματος

Ελαστογραφία (Elastography) OCT

- Μηχανικές ιδιότητες των ιστών
 - Χάρτες μετατόπισης (Displacement) και παραμόρφωσης (strain) λόγω μεταβαλλόμενων δυνάμεων
- Ελαστογραφία ΟCT
 - Μετρήσεις ελαστικότητας μπορούν να γίνουν μετά από ελάχιστη μηχανική παραμόρφωση του ιστού
 - Συσχέτιση συνεχόμενων εικόνων
 - Απεικόνιση με ευαισθησία φάσης
 - Ανάλυση ως προς βάθος, με ψηλή ευκρίνεια

• Ελαστογραφία (Elastography) OCT

OCE of breast tissue

Liang et al, Optics Express, 16:11052-11065, 2008

Η ΟCT μπορεί να παίξει ρόλο στη έγκαιρη διάγνωση ασθενειών και να βελτιώσει την πρόγνωση των ασθενών

- Απεικόνιση ψηλής ευκρίνειας για:
 - Έλεγχος για την ασθένεια, όπου είναι αδύνατη η βιοψία, δύσκολη ή επικίνδυνη
 - Καθοδήγηση των βιοψιών για να βελτιωθεί η ευαισθησία και η ειδικότητα και να μειώθει ο απαιτούμενος αριθμός
 - Μη-επεμβατική παρακολούθηση της ανταπόκρισης στη θεραπεία

• Πρόσφατες εξελίξεις

- Αυξημένη ταχύτητα (έως 200 εικόνες ανά δευτερόλεπτο)
- Βελτιωμένη ευκρίνεια (1-5 μm)
- Συμπαγή και αξιόπιστα συστήματα

Εφαρμογες

- Διάγνωση και διαχείριση
 διαταραχών του οφθαλμού
 - Ηλικιακή εκφύλιση της ωχράς κηλίδας
 - Διαβητικό οίδημα της ωχράς κηλίδας
 - Οπή της ωχράς κηλίδας
 - Επιωχρική μεμβράνη
 - Γλαύκωμα

Τελευταίες εξελίξεις

- Συνδυασμός ΟCT με φωτογράφησης βυθού και οφθαλμοσκόπηση σάρωσης λέιζερ
- 3D απεικόνιση της μορφολογίας του ιστού
- Υπερ-υψηλής ταχύτητας, υπερυψηλή ανάλυση με προσαρμόσιμα οπτικά συστήματα και διορθώσεις όλων των παραμέτρων (pancorrection)

<u>Standard (10 μm) and UHR (2 μm) OCT of</u> <u>the retina</u>

Drexler, Fujimoto, Progress in Retinal and Eye Research 27 (2008) 45–88

Macular Hole

Drexler, Fujimoto, Progress in Retinal and Eye Research 27 (2008) 45-88

<u>3D UHR Imaging of the retina</u> with OCT fundus view

Drexler, Fujimoto, Progress in Retinal and Eye Research 27 (2008) 45–88

Imaging of individual photoreceptors

Drexler, Fujimoto, Progress in Retinal and Eye Research 27 (2008) 45–88

 Απεικόνισητου τοιχώματος των αγγείων στο μικροσκοπικό επίπεδο

- Απεικόνιση ψηλής ευκρίνειας της δομής των στεφανιαίων
- Ακριβής χαρακτηρισμός της δομής της αθηροματικής πλάκας
- Ποσοτικοποίηση των μακροφάγων στο εσωτερικό της πλάκας
- Προσδιορισμός του πιο κοινού τύπου ευάλωτης πλάκας, του ινωδοαθηρώματος με λεπτή κάψα (thin-cap fibroatheroma)
- Παρακολούθηση της ανάπτυξης νάρθηκα (stent)

Καρδιολογία

Lipid rich plaque (OCT and IVUS) and

Καρδιολογία

Stented Coronary Artery

Yun, et al, Nature Medicine, 12, 1429-31, 2006

Γαστρεντερολογία

Εξαιρετικά καλή εφαρμογή για OCT

- Ψηλή συχνότητα εμφάνισης
- Κλινικά οφέλη από έγκαιρη διάγνωση
- Ανάγκη για αξιολόγηση πριν και μετά τη θεραπεία

• Εφαρμογές ΟCT στο ΓΕ

- Έγκαιρη ανίχνευση του καρκίνου σε ασθενείς με οισοφάγο Barrett
- Μελέτη των φλεγμονωδών παθήσεων του εντέρου στο παχύ έντερο
- Βασικός στόχος = καθοδήγηση βιοψίας
- Ψηλής ευκρίνεια και ψηλή ταχύτητας επιτρέπουν τώρα απεικόνιση όλου του οργάνου

Barett;s without and with HGD

Image Size: 2.5 mm, Resolution: 10 x 20 µm Evans et al, Clin Gastro Hepatol, 4, 38-43, 2006

Γαστρεντερολογία

Volume: 7 x 20 x 1.6 mm Resolution: 6 x 8 µm) Scan Speed: 62k A-Scans/sec

Normal Colon Adler, et al, Optics Express, 17(2), 784-796, 2009.

Γαστρεντερολογία

Volume: 7 x 20 x 1.6 mm Resolution: 6 x 8 µm) Scan Speed: 62k A-Scans/sec

Ulcerative Colitis

Adler, et al, Optics Express, 17(2), 784-796, 2009.

54

Δερματολογία

- Η ΟCT μπορεί να απεικονίσει
 - Την κερατίνη του άτριχου δέρματος (palmoplantar)
 - Την επιδερμίδα και το ανώτερο χόριο
 - Προσαρτήματα του δέρματος και αιμοφόρα αγγεία

• Χρήσεις

- Χρήσιμο στη μη επεμβατική παρακολούθηση των δερματικών φλεγμονών, υπερκεράτωση και διαδικασίες φωτοθεραπείας
- Μπορεί έχει μεγάλη αξία, ιδίως στη βιομηχανία καλλυντικών και φαρμακευτική βιομηχανία
- Θα μπορούσε να επιτρέπει την διαφοροποίηση μεταξύ καλοήθων και κακοήθων ιστών.

• Πρόσθετες παράμετροι

- Συντελεστής Σκέδαση
- Δείκτης διάθλασης.
- Φασματοσκοπία ΟCT
- Διπλοδιαθλαστικότητας ιστών
- Οκτώβριος elastography
- Doppler OCT ροής
- Σημαντικές εμβάθυνση σε νέα ευρήματα φυσιολογίας και παθολογίας δέρματος

Normal finger skin (standard OCT and birefringes)

Pierce, et al, J Invest Dermatol 123:458-463, 2004

Δερματολογία

Normal and scar finger skin (standard OCT and birefringes)

Pierce, et al, J Invest Dermatol 123:458 –463, 2004

Οδοντιατρική

Πιθανές εφαρμογές στην οδοντιατρική

- Ανίχνευση κρυμμένης οδοντικής τερηδόνας
- Ποσοτική παρακολούθηση του απο-και επανα-μεταλλοποίηση βλαβών
- Παρατήρηση των ενδιάμεσων επιφανειών των προγομφίων και γομφίων δοντιών
- Διερεύνηση της αποτελεσματικότητας των αποκαταστατικών σφραγισμάτων
- Έγκαιρη ανίχνευση ασθενειών
 των μαλακών ιστών

Molar restoration Brandemburg, et al, Optics Communications 227 (2003) 203–211

• Απεικόνιση εμβρυϊκής μορφολογίας

- Πρόοδος στον τομέα της γενετικής: γονίδια εντοπίζονται, μελετάτε η λειτουργία τους
- Νέα μοντέλα ζώων για τη μελέτη της γονιδιακής έκφρασης ή την έλλειψη της έκφρασης (ζώα knockout)
- Μελέτη της ανάπτυξης και εμβρυολογικών αλλαγών απαιτεί θανάτωση
- Απεικόνισης ψηλής ευκρίνειας στην αναπτυξιακή βιολογία παρέχει τη δυνατότητα για την μη επεμβατική:
 - Απεικόνιση εμβρυϊκής μικροδομής και φαινοτυπικής έκφρασης
 - Απεικόνιση λειτουργίας και αντίδρασης σε φάρμακα
 - Καθοδήγηση επεμβάσεων και χειρισμού του εμβρύου
 - Παρακολούθηση της ανταπόκρισης στη θεραπεία

Xenopus Laevis morphology

Boppart, et al, DEVELOPMENTAL BIOLOGY 177, 54–63 (1996)

- Πρόσθιος οφθαλμός
 - κερατοειδής και ίριδα
 - Πάχος Κερατοειδούς ~ 10 μm

Οπίσθιος οφθαλμός

- Στρώμα γάγγλιαών κυττάρων,
- Νευροβλάστες
 αμφιβληστροειδούς
- Χοριοειδές

Xenopus Laevis morphology

Boppart, et al, DEVELOPMENTAL BIOLOGY 177, 54–63 (1996)

3

Developing Embryo

Stage: 4 cell, 1 hour

Stage: Prim-5, 24 hr

Stage: 32 cell, 1.75 hour

Stage: Hatched, 48 hr

Developing Zebra fish embryo

Boppart, et al, DEVELOPMENTAL BIOLOGY 177, 54–63 (1996)

Abnormalities in Xenopus Laevis morphology Boppart, et al, DEVELOPMENTAL BIOLOGY 177, 54–63 (1996)

<u>4D imaging of mouse embryonic heart</u> Jenkins, et al, Optics Express, 14, 736-748, (2006)

Εμπορικά Συστήματα ΟCT

- Πρώτα εμπορικά συστήματα ΟCT
 - Humphrey Systems (τώρα μέρος της Carl Zeiss Meditec, Inc.)
 - Απεικόνιση του αμφιβληστροειδούς
 - Παρουσιάστηκε το1996
 - Έγκριση από το FDA το 2002.
 - Το σύστημα Stratus OCT™ έχει πωλήσει πάνω από 6000
 - Σύστημα Cirrus™ HD-OCT

Εμπορικά Συστήματα ΟCT

Τώρα υπάρχουν πολύ περισσότερες επιλογές

- LightLab Imaging
- Imalux Corporation,
- ISIS Optronics GmbH
- OCT Medical Imaging, Inc
- Michelson Diagnostics, Ltd
- Novacam Technologies, Inc
- Lantis Laser Inc
- OptoVue, Inc
- Topcon Corporation
- Optol Technology
- Heidelberg Engineering
- Opthalmic Technologies, Inc
- Thorlabs, Inc
- Bioptigen, Inc

Εξαρτήματα για ΟCT

- Femtolasers Produktions
- Nippon Telegraph and Telephone Corporation
- Thorlabs, Inc
- MenloSystems GmbH

Μπορούμε να "δούμε" περισσότερα;

Περιορισμοί ευκρίνειας

- 1-10 µm
- Ιδιαίτερο πρόβλημα στην εγκάρσια
- Πολλές καρκινικές και προκαρκινικές αλλαγές έχουν μm διαστάσει
 - Πολλαπλασιασμός κυττάρων:
 αλλαγή απόστασης 5 μm
 - Διαφοροποιήσεις πυρήνα: ~2-4 μm αλλαγή στη διάμετρο
 - Ενδο-κυτταρικές και ενδοπυρηνικές μεταβολές: αλλαγές < 1 μm

• Μη-διακριτά χαρακτηριστικά

- Σύμφωνη ακτινοβολία → κόκκωση (speckle)
- Θεωρείτε μορφή θορύβου

Κόκκωση (Speckle)

- Περιέχει πληροφορίες σχετικά με
 - Μέγεθος (Size)
 - Συγκέντρωση (Concentration)
 - Απόσταση (Spacing)
 - Περιοδικότητα (Periodicity)
 - κλπ

των σκεδαστών

- Διαγνωστικά χρήσιμη πληροφορία
- Στατιστικά και φασματικά χαρακτηριστικά

Barett's Esophagus

Dysplastic Cervix

Κόκκωση (Speckle)

- Το σήμα σκεδάζεται από μια κατανομή σκεδαστών
- Μη-σύμφωνη σκέδαση (Incoherent Scattering)
 - Η ένταση προστίθεται
- Σύμφωνη σκέδαση (Coherent scattering)
 - Τα πεδία προστίθενται
 - Η ολική ένταση μπορεί να μην αντικατοπτρίζει την κατανομή των σκεδαστών
 - Κόκκωση
 - Περιέχει πληροφορία σχετικά με το μέγεθος και την κατανομή των σκεδαστών
 - Διαγνωστικά χρήσιμη πληροφορία
 - Στατιστικά και φασματικά χαρακτηριστικά

- Η ιδιότητες της σκέδασης φαίνονται στο φάσμα
 - Οπτικό φάσμα της ΟCT
 - S(k) = FFT{s(t)}
- Τα χαρακτηριστικά του φάσματος του οπισθοσκεδασμένου σήματος εξαρτώνται από
 - Το φάσμα της πηγής
 - Την επίδραση των σκεδαστών
 - Μέγεθος → Φασματική εξάρτηση (όπως και στη LSS)

Ομοιώματα Ιστών

- Μικροσφαιρίδια πολυστερίνης σε πήκτωμα ακρυλαμιδίου
- Διάμετροι 1μm, 2μm και 4μm
- [C]_{1µm}=50 spheres, [C]_{2µm}=5 spheres and [C]_{4µm}=2 spheres/imaging volume

Δεδομένα από TD OCT

- Διαστάσεις Απεικόνισης: 17μm x 17μm x 15μm
- Συλλογή εικόνων
- Ψηφιοποίηση σε 6x τη φέρουσα συχνότητα
- Μετά-επεξεργασί

Image acquired from a phantom of 1µm and [C]=50

• Προ-επεξεργασία

Κανονικοποίηση σε RMS = 1

Υπολογισμός Φάσματος

- Αυτοπαλίνδρομη εκτίμηση φάσματος ισχύος (Autoregressive Power Spectral Estimation)
- Επίδραση της κατανομής ή/και συγκέντρωσης
 - Μπορεί να μειωθεί με τον μέσο όρο γειτονικών γραμμών
 - Φάσματα που εξαρτώνται μόνο από το μέγεθος
- Κατηγοριοποίηση (Classification)
- Ομαδοποίηση (clustering) K-Means
- Εκτίμηση μεγέθους σκεδαστή

Image acquired from a

phantom of 1µm and [C]=50

- Αυτοπαλίνδρομη εκτίμηση φάσματος ισχύος (Autoregressive Power Spectral Estimation)
 - Ταχύτερη σύγκλιση για μικρά σήματα
 - Μέθοδος Burg
 - Ελαχιστοποίηση (ελαχίστων τετραγώνων) εμπρός και πίσω σφαλμάτων πρόβλεψης
 - Αριθμός Συντελεστών: 100
 - Μέγεθος παραθύρου: 3001 (axial) x 25 (transverse) εικονοστοιχεία (pixels)
- Ανάλυση Κύριων Συνιστωσών (Principal Component Analysis - PCA)
 - Μείωση του αριθμού των παραμέτρων (35)
 - Νέα ορθογώνια βάση χωρίς περιττές πληροφορίες

Κατηγοριοποίηση

- Πολυμεταβλητή ανάλυση διακύμανσης (Multivariate Analysis of Variance - MANOVA)
 - Νέος γραμμικός συνδυασμός των μεταβλητών
 - Μέγιστος διαχωρισμός μεταξύ των κατηγοριών
- Διακρίνουσα κατηγοριοποίηση (discriminant based classification)

Scatterer Size Estimation

- Ανάλυση Κύριων Συνιστωσών (Principal Component Analysis -PCA)
- Λύση γραμμικών εξισώσεων

$$P_{xx} A = d$$
$$A = P_{xx}^{-1} d_{training}$$

- Πληροφορίες μπορούν να εξαχθούν από το φάσμα
 - Κατηγοριοποίηση των εικόνων με βάσητο μέγεθος του σκεδαστή
 - Ευαισθησία και ειδικότητα: 85-99
 %
 - Εκτίμηση του μεγέθους του σκεδαστή από τις γραμμικές εξισώσεις
 - Μέσο Σφάλμα: 16.5%
 - Απαιτεί εκ των προτέρων (a priori) πληροφορία και εκπαίδευση

Classification Results Overlayed on Intensity Image

1 x 3 mm (17 x 20 µm)

- Ομαδοποίηση (clustering) K-Means
- Διαχωρίζει τα δεδομένα σε προκαθορισμένο αριθμό ομάδων
 - Ελαχιστοποιήστε την απόσταση από το κέντρο βάρους της κάθε ομάδας
 - Θεωρεί ότι οι ιδιότητες κάθε αντικειμένου είναι συντεταγμένες σε πολυδιάστατο χώρο
 - Επαναληπτικά υπολογίζει το κέντρο και κάνει ανακατανομή σε ομάδες ώστε να ελαχιστοποιήσει το

$$V = \sum_{i=1}^{k} \sum_{x_j \in S_i} \left| x_j - \mu_i \right|^2$$

 Πλεονέκτημα: Δεν απαιτεί a priori πληροφορία

 Ομαδοποίηση περιοχών με την ίδια ένταση, αλλά διαφορετικό μέγεθος σκεδαστών

Scatterer Diam.	1 µm	2 µm	4 µm
Sensitivity	95.11	97.11	92.56
Specificity	99.44	99.44	99.44

Intensity image of microspheres

1 x 3 mm (15 x 30 µm)

Intensity image of nerve

Clustering image of nerve

Intensity image of tadpole

Clustering image of tadpole

1.5 x 1.95 mm (15 x 30 µm)

- Η ΟCΤ είναι ένα πολλά υποσχόμενο διαγνωστικό εργαλείο
- Συστήματα ψηλής ευκρίνειας και ταχύτητας παρέχουν, σε πραγματικό χρόνο, δυναμικά, διαγνωστικά χρήσιμα πληροφορίες
- Υπάρχουν ακόμα πολλά να γίνουν για να επιβεβαιωθεί όφελος για τους ασθενείς
 - Κλινικές μελέτες
 - Πρότυπα και συναίνεση
 - Απόδειξη οφέλους για τους ασθενείς