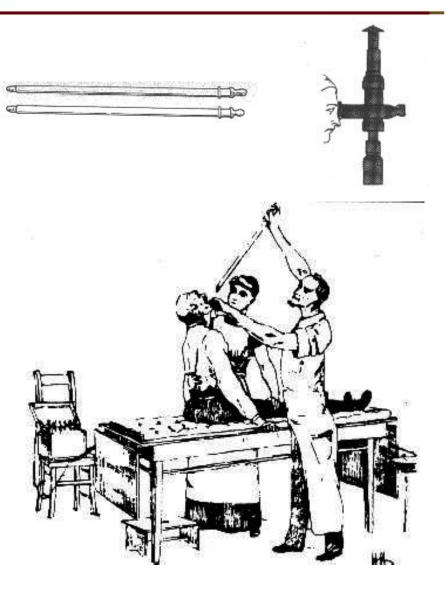
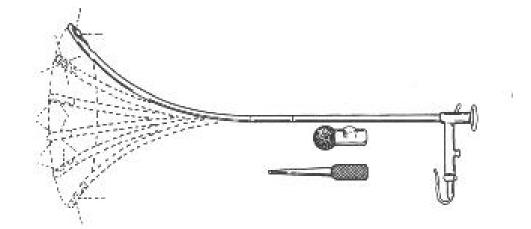
University of Cyprus Biomedical Imaging and Applied Optics

Endoscopic Imaging

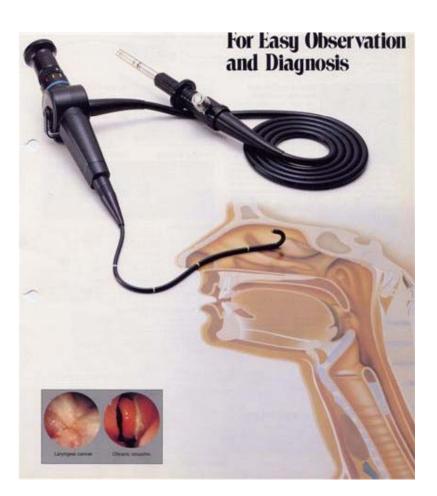


- 400 BC: Hippocrates observes the anus using a speculum
- The first real endoscope that was developed was made by Phillip Bozzini in 1805 to examine the urethra, the bladder and vagina.


- 1867 Desormeaux used an open tube to examine the genitourinary tract
- Adolf Kussmaul in 1868 used a straight rigid metal tube over a flexible obturator to perform the first gastroscopy.

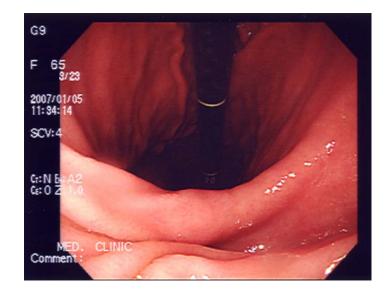
 Building on the work of others, Rudolph Schindler constructed the first practical gastroscope in 1932.

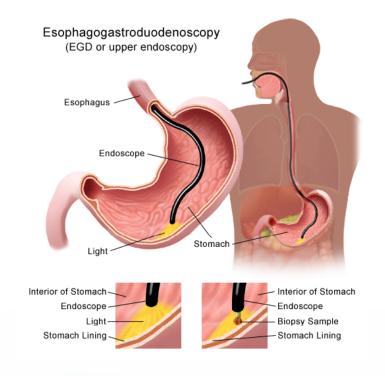
• In 1957 Basil Hirschowitz developed his prototype fiberscope.

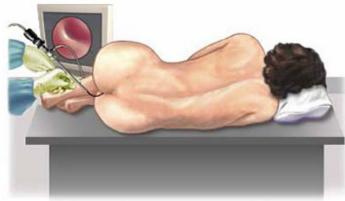


Endoscopy

Endoscopy


- A minimally invasive diagnostic medical procedure
- The examination of internal body cavities using a specialized medical instrument called an endoscope.
- Gives visual evidence of the problem (e.g. cancer, ulceration or inflammation)
- Can be used to collect a sample of tissue or remove problematic tissue
- Used to take photograph of the hollow internal organs
- Performed under
 - Conscious sedation
 - Total Anesthesia




Endoscopy

- Physicians use endoscopy to diagnose, monitor, and surgically treat various medical problems
- A surgeon introduces the endoscope into the body either through a body opening, such as the mouth or the anus, or through a small incision in the skin.

8

Endoscopy

Risks of Endoscopy

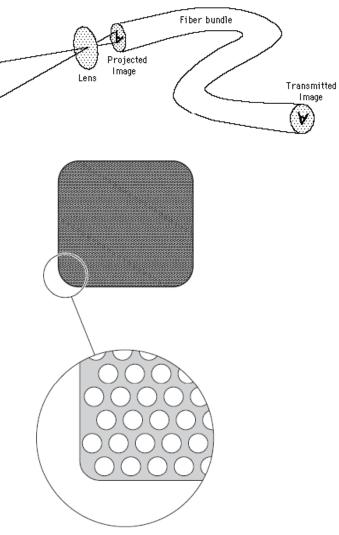
- Sedation
- Damage to dentition
- Aspiration
- Perforation or hemorrhage after endoscopic dilatation
- Perforation, infection, and aspiration after percutanous endoscopic gastrostomy insertion
- Perforation or hemorrhage after flexible sigmoidoscopy / colonoscopy with polypectomy
- Pancreatitis, cholangitis, perforation or bleeding after ERCP

9

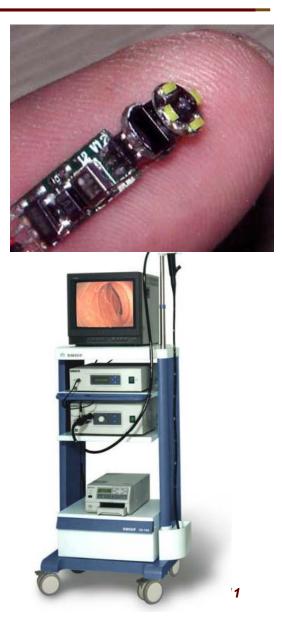
Endoscopy

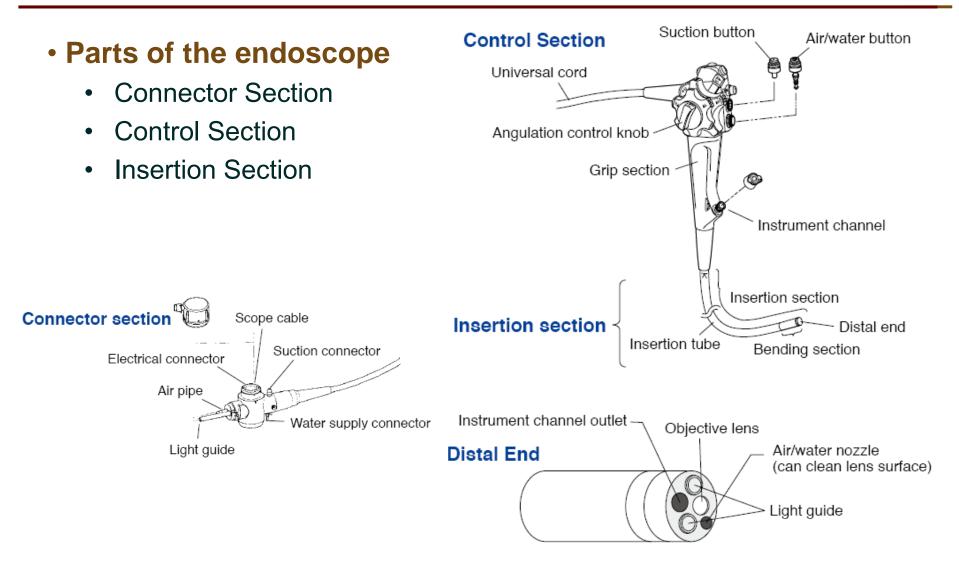
• The endoscope

- A slender, flexible or rigid tube
- Equipped with lenses and a light source.
- CCDs are used to feed a video to the monitor
- Through the accessory channels of the endoscope water and air is supplied to wash and dry the surgical site.
- Also has a channel through which surgeons can manipulate tiny instruments, such as forceps, surgical scissors, and suction devices.
 - A variety of instruments can be fitted to the endoscope for different purposes.



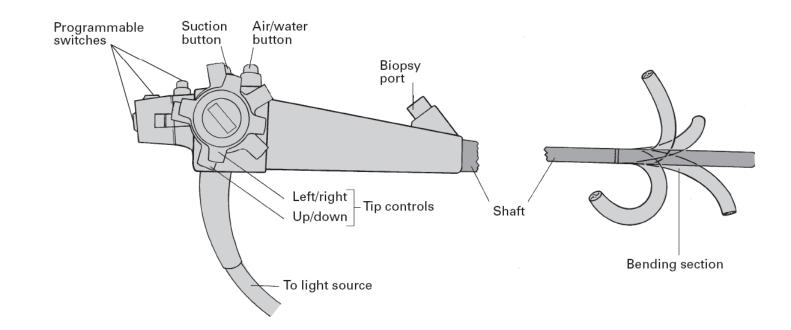
Fiberoptic instruments


- Based on optical viewing bundles
- 2–3·mm in diameter and contains 20·000–40·000 fine glass fibers, each close to 10·µm in diameter
- Each individual glass fiber is coated with glass of a lower optical density to prevent leakage of light from within the fiber
 - The space between the fibers causes a dark 'packing fraction' → fine mesh frequently apparent in the fiberoptic image
- Advantages
 - Fiberoptic bundles are extremely flexible, and an image can be transmitted even when tied in a knot.
 - Small diameter
 - Direct view (monitor not necessary)
- Limitations
 - The image quality of a fibreoptic bundle, though excellent, can never equal that of a rigid lens system or a video-endoscope
 - Limited number of "pixels"



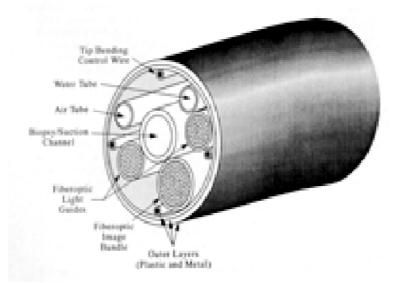
Video-endoscopes

- Mechanically similar to fiber-endoscopes,
- A CCD chip and supporting electronics mounted at the tip
- To and fro wiring replacing the optical bundle
- Further electronics and switches occupying the site of the ocular lens on the upper part of the control head.
- Advantages
 - Improved image quality
 - View through a monitor
 - Removing any need to hold the instrument close to the endoscopist's eye has hygienic advantages (avoidance of splash contamination)
 - Improved instrument design and handling techniques
- Limitations
 - No direct viewing
 - Can not be made < 5 mm



12

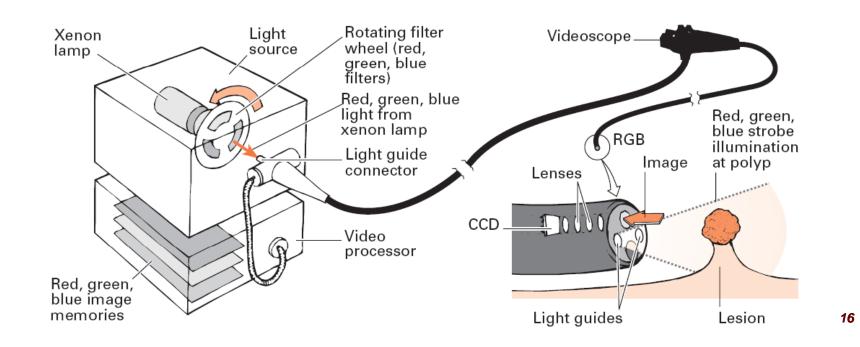
Control section


- · Held in the operator's left hand
- Has two stacked angulation control knobs
 - direct up/down and left/right deflection of the endoscope tip.
- Has air/water and suction valves
- Has remote switches to modify or capture the video image.
- Has entry port to the instrument channel(s) is (are)
- Fiber optic instruments have an eyepiece located at the top of the control section for direct image viewing.

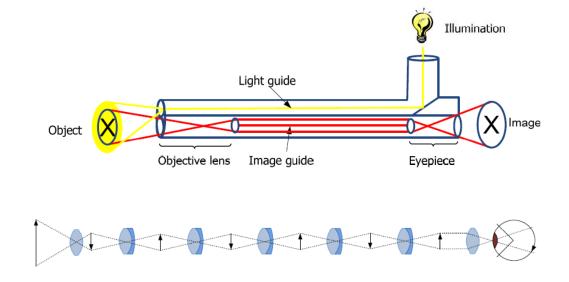
Insertion Section

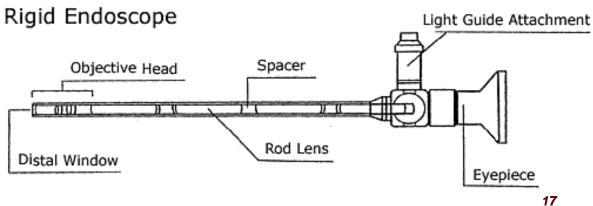
- The portion of the endoscope that is inserted into the patient
- The length, diameter, and degree of stiffness of the insertion tube vary among models.
- The insertion tube contains
 - One or two instrument channel(s)
 - One or two light guide bundles (incoherent fiber optic)
 - An air channel, a water channel
 - Either an image guide bundle or a CCD chip with wire
 - Connections, and angulation wires.

Endoscopic Accessories

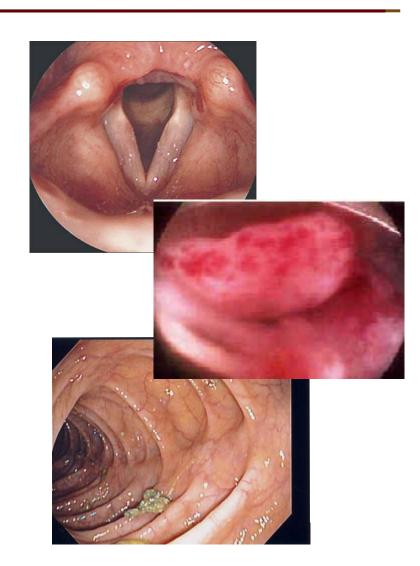

- Biopsy forceps
- Graspers
- Baskets
- Injectors
- Dilators
- Knives
- HF endo-therapy accessories
- . . . too many types of accessories.

Connector section


- A light guide,
- An air-pipe
- Electrical contacts compatible with the processor/light source.
- Side connectors for a water container, suction, CO2, insertion tube venting
- An S (safety)-cord connecting mount, which grounds the endoscope, reducing the electrical shock hazard to the operator.


The Rigid Endoscope

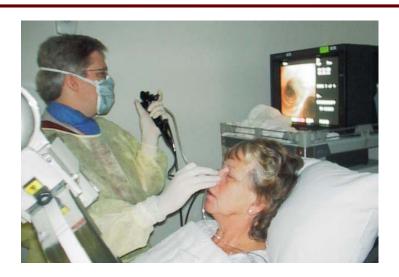
- A lens system transmitting the image to the viewer
 - Typically a relay lens system
 - Rod lenses provide for better image quality and light efficiency



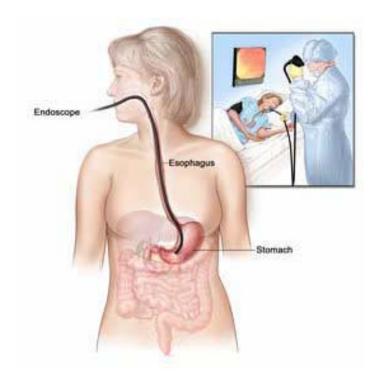
Different diameters and viewing angles

Flexible Endoscopy

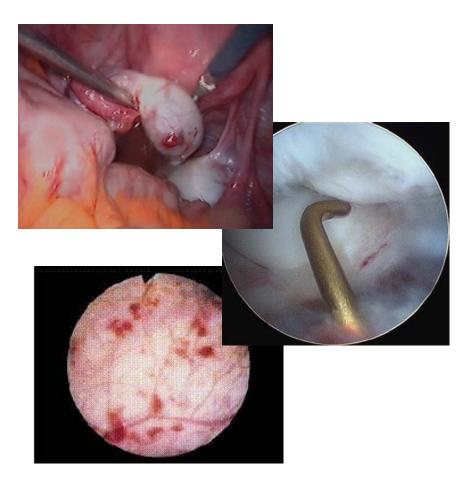
- Depending on the body part, each type of endoscopy has its own special term, such as
 - laryngoscopy (vocal cords)
 - bronchoscopy (lungs)
 - colonoscopy (colon)
 - Esophagoscopy (esophagus)
 - gastroscopy (Stomach)
 - Hysteroscopy (uterus)
 - etc



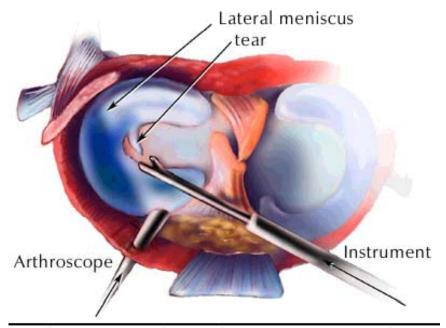
Bronchoscopy



Esophagoscopy

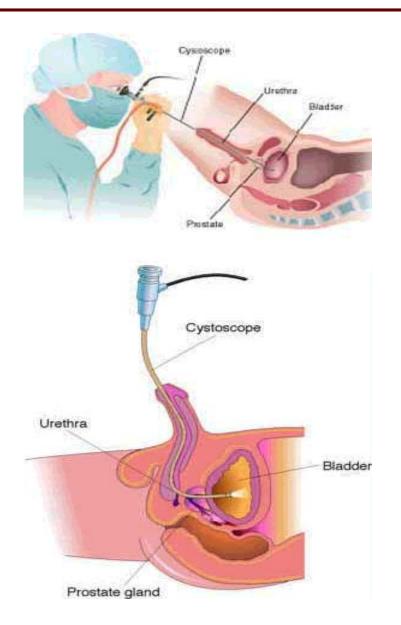


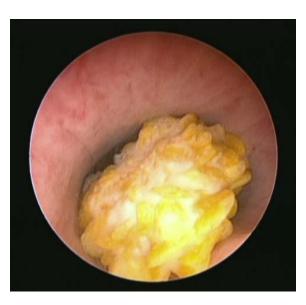
Surgical or Rigid Endoscopy

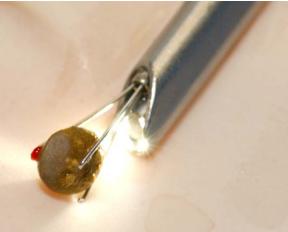


- Laparoscopy
- Arthroscopy
- Endo-Urology
- Gynecology
- E.N.T-applications
- Proctoscopy
- And many other surgical applications (gastrectomy,neurosurgery, ...etc)

Arthroscopy


Arthroscopy can be used to repair a tear of the lateral meniscus of the knee. The arthroscope allows the surgeon to see and repair the tear inside the knee joint.

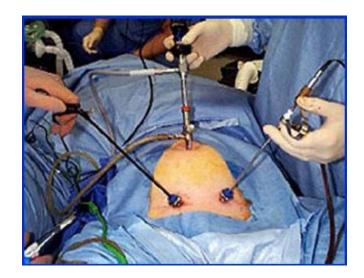




Urethrocytoscopy

Laparoscopic Surgery

- Laparoscopy is minimal access surgery
 - Accomplish surgical therapeutic goals with minimal somatic and psychological trauma.
- A rigid endoscope is introduced through a sleeve into the peritoneal cavity.
- The abdomen inflated with carbon dioxide
- Further sleeves or ports are inserted to enable instrument access and their use for dissection.



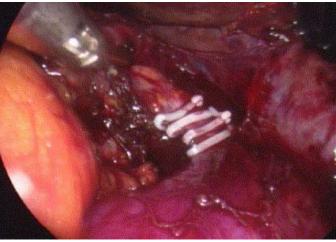
Laparoscopic Surgery

Examples

- Laparoscopic cholecystectomy has become the standard of management of uncomplicated gallstone disease.
- With improved instruments and more experience it is likely that other advanced procedures, previously regarded as controversial, will also become fully accepted
 - E.g. laparoscopic colectomies for malignancy,

Benefits of Laparoscopic Surgery

- Smaller incision
- Improved cosmetics
- Reduced possibility of infection
- Reduced post op pain
- Reduced blood loss
- Return home quicker
- Return to work quicker!



Limitations of Laparoscopic Surgery

- Reliance on remote vision
 and operating
- Loss of tactile feedback
- Dependence on hand-eye coordination
- Difficulty with haemostasis
- Extraction of large specimens
- Reliance on new techniques

Da Vinci Surgical System

• Not really a robot!

- Master-slave system the surgeon directly initiates all the movements of the robotic instruments in real time
- The prototype was developed by Stanford Research Institute in 1980s, funded by US Army, to perform battlefield surgery remotely by a surgeon in the safe rear
- <image>
- FDA approved in human operations in 2000

Da Vinci Surgical System

Imaging

- Double lenses
 laparoscope
- 3D, high definition, binocular view
- 10-15X magnification

• Dexterity

- Endowrist instruments have 6 degrees of freedom
- Filtering off hand tremor
- Scaling down movements 1-5X

Da Vinci Surgical System

DaVinci Offers

- Improved dexterity
- Better control
- Better precision
- Improved ergonomics decreased fatigue and strain

Advantages

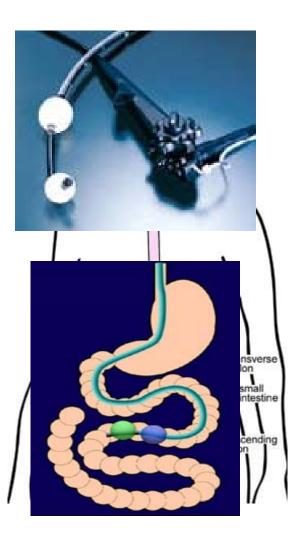
- Reduced hospital stay
- More high risk patients can be treated
- Less staff required

• Limitations

- Cost of equipment \$1 million
- Steep learning curve for surgeons
- Doctors training on device felt hindered by lack of ability to feel the tissue they're working on
- Surgery with this system takes 40-50 minutes longer than standard procedure

Limitation of Fiberoptic Endoscopy

Double Balloon (Push-and-Pull) Endoscopy


- Fiberoptic method to visual the entire small bowel
- Two balloons are inflated and deflated in sequence to move the endoscope through the bowel

Advantages

- Complete visualization of the entire small bowel to the terminal ileum
- Can do therapeutic interventions
- Allows for sampling/biopsying of small bowel mucosa
- Allows for resection of polyps
- Placement of stents or dilation of small bowel strictures

Disadvantages

- Technically difficult procedure
- Very time consuming (Procedure can take > 3 hours)
- Patient may need to be admitted to the hospital
- Higher risk of small bowel perforation
- Case reports of pancreatitis and intestinal necrosis
- Reported incidents of aspiration and pneumonia

Capsule Endoscopy

- Capsule endoscopy was first used in humans in 1999.
- First publication on capsule endoscopy was published in Nature in 2000:
 - Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule Endoscopy. Nature. 2000; 405:417.
- Two major companies have capsule endoscopy products.
 - Given Imaging has the PillCam
 - Olympus has the EndoCapsule
- The latest pill camera
 - Sized at 26x11 mm
 - Capable of transmitting 50,000 color images during its traversal through the digestive system of patient.

Inside a Capsule Camera

1.Optical Dome

- This shape results in easy orientation of the capsule axis along the central axis of small intestine and so helps propel the capsule forward easily.
- The Optical Dome contains the Light Receiving Window .

2.Lens Holder

 The Lens Holder is that part of the capsule which accommodates the lens. The lens is tightly fixed to the holder so that it doesn't get dislocated anytime.

3.Lens

- The Lens is an integral component of the capsule.
- It is arranged behind the Light Receiving Window.

Inside a Capsule Camera

4.Illuminating LED's

 Around the Lens & CMOS Image Sensor, four LED's (Light Emitting Diodes) are present. These plural lighting devices are arranged in donut shape.

5.CMOS Image Sensor

- CMOS (Complementary Metal Oxide Semiconductor) Image Sensor is the most important part of the capsule. It is highly sensitive and produces very high quality images.
- It has 140° field of view and can detect objects as small as possible.

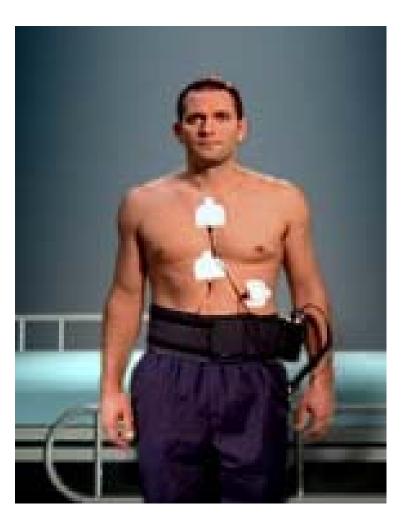
Inside a Capsule Camera

6.Battery

- Two batteries
- Silver Oxide primary batteries are used (Zinc/Alkaline Electrolyte/Silver Oxide). Such a battery has a even discharge voltage, disposable and doesn't cause harm to the body.

7.ASIC Transmitter

- The ASIC (Application Specific Integrated Circuit) Transmitter is arranged behind the Batteries as shown. Two Transmitting Electrodes are connected to the outlines of the ASIC Transmitter.
- These electrodes are electrically isolated from each other.


8.Antennae

• As shown, the Antennae is arranged at the end of the capsule. It is enclosed in a dome shaped chamber.

How does Capsule Endoscopy Work?

- Capsule is swallowed by the patient like a conventional pill.
- It takes images as it is propelled forward by peristalsis.
- A wireless recorder, worn on a belt, receives the images transmitted by the pill.
- A computer workstation processes the data and produces a continuous still images.

Advantages of Capsule Endoscopy

• Uses

- Crohn's Disease.
- Malabsorption Disorders.
- Tumors of the small intestine & Vascular Disorders.
- Ulcerative Colitis
- Medication Related To Small Bowel Injury.

Advantages

- Painless, no side affects or complications.
- Miniature size, so can move easily through the digestive system.
- Accurate, precise and effective.
- Images taken are of high quality are sent almost instantaneously to the data recorder for storage.
- Made of bio-compatible material, doesn't cause any harm to the body.

Limitations of Capsule Endoscopy

- Slow Gastric/Intestinal Motility.
- Narrowing or obstruction
- Potentially obstructed views
- Morbidly obese patients

Technical limitations

- Poorer quality of images as compared to Fiberoptic scopes
- The position of the capsule can not be accurately controlled
- Interpretation of results are very observer dependent
- Findings may be of unknown significance or relevance.
- Inability to biopsy or treat any pathology seen.

• Overcomes

- Smaller devices
- Bi-directional telemetry camera?

