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Digital Signal Processing (DSP) Introduction

• Digital Signal Processing (DSP) is a branch of signal processing

that emerged from the rapid development of VLSI technology 

that made feasible real-time digital computation.

• DSP involves time and amplitude quantization of signals and 

relies on the theory of discrete-time signals and systems.

• DSP emerged as a field in the 1960s. 

• Early applications of off-line DSP include seismic data analysis, 

voice processing research.
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Digital vs Analog Signal Processing

Advantages of digital over analog signal processing:

• flexibility via programmable DSP operations,
• storage of signals without loss of fidelity,
• off-line processing,
• lower sensitivity to hardware tolerances,
• rich media data processing capabilities,
• opportunities for encryption in communications,
• Multimode functionality and opportunities for software radio.

-Disadvantages : 

• Large bandwidth and CPU demands 
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DSP Historical Perspective

• Nyquist Theorem 1920's.

• Statistical Time Series, PCM 1940's.

• Digital Filtering, FFT, Speech Analysis mid 1960s (MIT, Bell 

Labs, IBM).

• Adaptive Filters, Linear Prediction (Stanford, Bell Labs, Japan 

1960s).

• Digital Spectral Estimation, Speech Coding (1970s).
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DSP Historical Perspective (2)

• First Generation DSP Chips (Intel microcontroler, TI, AT&T, 
Motorola, Analog Devices (early 1980s)

• Low-cost DSPs (late 1980s)

• Vocoder Standards for civilian applications (late 1980s)

• Migration of DSP technologies in general purpose CPU/Controllers
"native" DSP   (1990s)

• High Complexity Rich Media Applications

• Low Power (Portable) Applications
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DSP Applications

• Military Applications (target tracking, radar, sonar, secure 
communications, sensors, imagery)

• Telecommunications (cellular, channel equalization, vocoders, 
software radioetc)

• PC and Multimedia Applications (audio/video on demand, streaming
data applications, voice synthesis/recognition)

• Entertainment (digital audio/video compression, MPEG, CD, MD, 
DVD, MP3)

• Automotive (Active noise cancellation, hands-free communications, 
navigation-GPS, IVHS)

• Manufacturing, instrumentation, biomedical, oil exploration, robotics

• Remote sensing, security
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Communications and DSP

• DTMF (use of the FFT and digital oscillators)

• Adaptive echo cancellation (Hands-free telephony, Speakerphones)

• Speech coding (speech coding in cellular phones)

• Modem (data/computer connectivity)

• Software radio (multi-mode/multi standard wireless communications)

• Channel estimation (equalization)

• Antenna beamforming (space division multiple access - SDMA)

• CDMA (modulating with random sequences)
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Typical Digital Signal Processing System
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Remarks:  The diagram shows the sampling, processing, and reconstruction 

of  an analog signal.  There are applications where processing stops at the digital

signal processor, e.g., speech recognition.

Antialiasing
Reconstruction

NowdaysNowdays LPF and A/D integratedLPF and A/D integrated

NowdaysNowdays LPF and D/A integratedLPF and D/A integrated

DSP chip
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Symbols and Notation

indextimediscrete;

function)(systemresponseimpulse;(.)

functionsresponsefrequencyandtransfer;(.)

outputtimediscrete;)(

inputtimediscrete;)()(|)(
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Remarks:  In general and unless otherwise stated lower case symbols will 

be used for time-domain signals and  upper case symbols will be used for

transform domain signals.  Bold face or underlined face symbols will be 

Be generally used for vectors or matrices.
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Continuous vs Discrete-time

Remarks: A continuous-time signal is converted to discrete-time using sampling and 

quantization.  As a result aliasing and quantization noise is introduced.  This noise

can be controlled by properly designing the quantizer and anti-aliasing filter.

Qx(t) x(n)

t

x(t)

n

Continuous-time (analog)  Signal Discrete-time (digital) signal

0 T 2T ...

x(n)
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Quantization Noise

sampling period

)()()( tetxtx qq

eq(t)

analog waveform

quantized waveform

quantization noise

T

xa(t)

xq(t)
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Simplest Quantization Scheme -

Uniform PCM

Performance in terms of Signal to Noise Ratio (SNR)

where Rb is the number of bits and the value of  K1

depends on signal statistics. For  telephone speech

K1 = - 10

1bPCM KR02.6SNR
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Oversampling / or / Conversion

• Integrated oversampling and 1-bit quantization

• Very compact and inexpensive circuitry (some low power applications 
as well)

• Lowers analog circuit complexity with a modest increase in software 
(DSP MIPS) complexity

• Uses concepts from multirate signal processing and Delta Modulation

• Will be described in the context of multirate signal processing
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Time vs Frequency Domain
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Remarks: Slowly time-varying signals tend to have low-frequency content

while signals with abrupt changes in their amplitudes have high frequency content.

The frequency content of signals can be estimated using Fourier techniques.
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Example:  Time vs Frequency Domain Speech

Time domain speech segment
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Periodic waveform gives harmonic spectraPeriodic waveform gives harmonic spectra
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Review of Analog Signals and Systems

• FREQUENCY DOMAIN ANALYSIS
– The Fourier series (measuring the spectrum of periodic signals)

– The Fourier transform (measuring the spectrum of non-periodic signals and generally all 
signals)

• SAMPLING
– The Sampling theorem (how we convert to digital signals without losing 

information)

• FILTERS

– Continuous-time systems (analog filters)

– Convolution (how filtering is done)
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Some Important Signals
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Continuous-time Impulse
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Discrete-time Impulse
0

Think of signals as a sum of impulses. Think of signals as a sum of impulses. 

Impulses help in analyzing signals and filtersImpulses help in analyzing signals and filters
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Some Important Signals (2)

Continuous-time unit step

Discrete-time unit step
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Some Important Signals (3)

Sinusoids are used in analyzing or synthesizing acoustic and othSinusoids are used in analyzing or synthesizing acoustic and other signalser signals

The sinusoid

}{)
2

(sin)(sin t
T

t

Period TPeriod T

T
f 2

2 units:units: ((rad/srad/s)) ff (Hz)   T(s)(Hz)   T(s)
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Some Important Signals (4)

The sinc function

}{t
tt )sin(

)(sinc
. . .

0

. . .

2

SincSinc functions often appear in signal and filter analysisfunctions often appear in signal and filter analysis

particularly when considering frequency domain behaviorparticularly when considering frequency domain behavior

mainlobemainlobesidelobessidelobes
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Some Important Signals (5)

Random noise

Encountered in communication systems and other applicationEncountered in communication systems and other application

Characterized by their mean and varianceCharacterized by their mean and variance
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Frequency-domain representations of signals

In order to observe and analyze the spectrum, the signal is 

usually represented in terms of  other basic (“basis”) signals. 

Basis signals or more precisely basis functions are typically 

chosen to be orthogonal.  The most common orthogonal basis 

function used in signal analysis is the sinusoid.  This is mainly 

because of:

• the physical properties of a sinusoid, i.e., as an acoustic tone

• the fact that sinusoids are “eigenfunctions” of linear systems 

(“Sinusoid In – Sinusoid Out”)

linear system
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Representing Periodic Signals with Sinusoids

)sin()cos( tkjtke oo
tjk o

11

0 )sin()cos()(
k
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k

ok tkbtkaatx

k

tjk
k

oeXtx )(

Fourier series:  Trigonometric form:Fourier series:  Trigonometric form:

Fourier series:  Complex (magnitude/phase) form:Fourier series:  Complex (magnitude/phase) form:

Preferred in engineering Preferred in engineering ---->>>>

Xk are complex F.S. coefficients and provide spectral magnitude andare complex F.S. coefficients and provide spectral magnitude and phase infophase info

andand
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The Complex Fourier Series

where To /2

k

tjk
k

oeXtx )(

T
tjk

k dtetx
T

X o
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)(
1 Analysis Expression

Xk are discrete F.S.
spectral coefficients 

Synthesis Expression

The magnitude of F.S. coefficients, The magnitude of F.S. coefficients, XXk, provides info on frequency content. Phase of provides info on frequency content. Phase of 

XXk often provides info on events in signal (e.g., beginning of a poften provides info on events in signal (e.g., beginning of a period etc.)eriod etc.)
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Use Sinusoids to synthesize a periodic pulse using the 

Fourier series (only one period shown)

1 sinusoid1 sinusoid

2 sinusoids2 sinusoids

3 sinusoids3 sinusoids

10 sinusoids10 sinusoids

50 sinusoids50 sinusoids

100 sinusoids100 sinusoids
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Fourier Series Analysis Example
Representing a Periodic Pulse Train as a Sum of Harmonic Sinusoids

Remarks: A periodic pulse signal has a discrete F.S. spectrum described by

samples that fall on a sinc (sinc(x)=sin(x)/x) function. As the period 

increases the F.S.  components become more dense in frequency and weaker 

in amplitude. If  T goes to infinity periodicity is lost and the F.S. vanishes.
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Fourier Series Example (2)
Harmonic Spectrum
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d/T=1/5

d/T=1/10

4

2

0

0

Fourier Series Example (3)
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Remarks on the Fourier Series

• F.S. represents periodic signals with a sum of harmonic sinusoids

• the F.S.spectrum is discrete and F.S. components correspond to integer 
multiples of the fundamental frequency 

• periodic signals have a discrete spectrum 

• a uniformly sampled spectrum implies periodicity in the time domain

• A discrete-time F.S. is also available

• If                                 the F.S. vanishes

• F.S. can be used for spectral analysis, filter design, and many other 
applications

T
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Selected F.S. Properties
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From the F.S. to the Continuous Fourier Transform

For non-periodic signals oT &

deXdedex
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Remarks: For non-periodic signals the F.S. vanishes.  If the limit is taken then

we can derive the continuous Fourier transform.  The last equation is known as

the inverse Fourier transform.  Note that  is now a continuous variable
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The Continuous Fourier Transform (CFT) Equations

The Fourier transform

dtetxX tj)()(

The inverse Fourier transform

1
( ) ( )

2

j tx t X e d

A Fourier transform pair is designated by: )()( Xtx

Synthesis Expression

Analysis Expression

Remarks: Both time and frequency are continuous variables.  The CFT can

handle non-periodic signals as long as they are integrable.  Periodic signals can 

be handled using  the impulse and CFT properties.
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Fourier transform of a time-limited pulse

Given the signal tx

d

t
......

0

Remarks: Note that a time-limited signal has a non-bandlimited CFT spectrum.

The sinc function has zero crossings at integer multiples of 2 /d.  As the pulse

width increases the sinc function “shrinks”.  In the limit, if T goes to infinity 

(i.e., pulse becomes D.C. signal) the sinc function collapses to a unit impulse.
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Fourier transform of a time-limited pulse(Cont.)
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Remarks on the CFT

•Proper computation of the CFT spectrum requires that the 

signal is known  everywhere in time

•Spectra of truncated signals suffer from spectral leakage and 

loss of resolution

•A time-limited signal has a non-band-limited CFT spectrum

•A band-limited signal can not be time-limited 

•The forward and inverse CFT formulas are symmetric and 

therefore we observe dualities in CFT transform pairs and CFT 

properties

•Numerical computation of the CFT is done using the fast 

Fourier Transform (FFT)
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Symmetry of the Fourier transform
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Selected F.T properties - Linearity
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Example:
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Selected F.T properties - Scaling

stretching a signal in time implies compressing it in frequency

compressing a signal in time implies stretching it in frequency

)(
||

1
)(

a
X

a
tax

Note that time expansion implies frequency compression
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Selected F.T Properties  - Time Shift

Remarks: A time shift introduces linear phase in the frequency domain 

if )()( Xtx

then )()( 0

0 Xettx tj

--linear phase factorlinear phase factor

--has unit magnitudehas unit magnitude

-- phase is linear phase is linear 

across frequencyacross frequency
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Selected F.T Properties – Frequency Shift
MODULATION - VERY IMPORTANT IN WIRELESS COMMUNICATIONS

If )()( Xtx
then )()( 0

0 Xtxe tj

multiplication by sinusoid translates the signal in frequencymultiplication by sinusoid translates the signal in frequency
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The Time-Domain Convolution (Filtering) Property

)()(

)()(

Hth
Xtx

DEMODEMO

)()()(*)( XHtxth

convolution in time is multiplication in frequencyconvolution in time is multiplication in frequency

dtxhtxth )()()(*)(

...... t
... ...... * = t

Example: Convolution of an exponential with a pulseExample: Convolution of an exponential with a pulse

MuliplicationMuliplication in frequency in frequency 

is essentially a filtering operationis essentially a filtering operation
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Frequency Convolution

)()(

)()(

Wtw
Xtx

then

)(*)(
2

1
)()( XWtwth

If w(t) is time limitedIf w(t) is time limited

then this operation truncatesthen this operation truncates

Convolution tends to haveConvolution tends to have

a spreading effecta spreading effect
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)(21

1)( t

Important Fourier Transform Pairs
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))()(()cos( 000t

Important Fourier Transform Pairs (2)
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Frequency Convolution and Windowing

Truncation

Truncated Signals:

t

)(tx
)(tw

)()( twtx

Remarks: Truncating an infinite-length signal is equivalent to multiplying

it with a finite-length window.  Multiplying a sinusoid with a rectangular 

pulse results in a finite-length sinusoid.  All real-life signals are finite length.

…. ….
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Truncating a Cosine
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Truncating in time implies convolution in frequency

0

0

Truncation with a short rectangular window implies convolution with a “wideband” sinc

Remark:  Truncation with a wider rectangular window implies convolution with a 

“narrowband”  sinc.  If  the length of the rectangular window becomes arbitrarily long 

the sinc collapses to an impulse.  Clearly,  longer windows in time imply improved 

spectral resolution and less spectral leakage.
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Truncating Signals with Tapered Windows
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Truncating Speech 

CFT

Normalized frequency x rad/sec
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CFT

Normalized frequency x rad/sec

Truncating Speech (tapered window)
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Truncating Signals with Tapered Windows (2)

•Truncation of a signal is inevitable in real life spectral estimation. Strong 

sidelobes contribute to spectral leakage and spectral smearing.  The width 

of the mailobe affects the resolution of spectral estimates.

•In choosing a window one is confronted with the tradeoff of the 

mainlobe width and sidelobe level. Tapered windows have suppressed 

sidelobes relative  to a rectangular window.  However, the mainlobe

width of a tapered window is wider than that of  a  rectangular window

•Truncation is also involved in designing  FIR digital filters from Fourier 

series components.  The sidelobe level affects the rejection and ripple 

characteristics while the mainobe width affects the transition 

characteristics.
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The Sampling Process

A bandlimited signal that has no spectral components at or above 

B can be uniquely represented by its sampled values spaced at 

uniform intervals that are not more than /B seconds apart.

or  a signal that is bandlimited to B must be sampled at a rate of 

s where   

B
T

xx ==

analog signalanalog signal samplingsampling digital signaldigital signal

BforB ss 2



2007 Copyright 2007 ©Andreas Spanias 

Example:  Audio - Bandwidth

200 - 3200 Hz Basic Telephone Speech

Intelligible

Preserves Speaker Identity

50 - 7000 Hz Wideband Speech

AM- grade audio

50 - 15000 Hz Near High Fidelity

FM- grade Audio

20 - 20000 Hz High- Fidelity

CD/DAT Quality Voice
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Example: Sampling of Audio Signals

192 kHz96 kHzDVD audio (DVD-A)

2.8224 MHz
100 kHzSuper audio CD 

(SACD)

48 kHz
20 kHzDigital audio tape 

(DAT)

44.1 kHz20 kHzHigh-fidelity, CD

16 kHz7 kHzWideband audio

8 kHz3.2 kHzTelephony

Sampling frequencyBandwidthFormat
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The Math Representation of Sampling

txs
tx X

ts

Mathematical representation

s

Engineering representation

txstx

Remark:  Multiplication with the ideal switching function results in a periodic 

spectrum  where the signal spectrum is repeated at integer multiples of the 

sampling frequency.
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Sampling by multiplying with impulses

The switching or sampling function

s t t nT
n

( ) ( )

ts

0

T T2 T3 t
......

xx ==

analog signalanalog signal samplingsampling digital signaldigital signal
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The Sampling Signal in the Frequency Domain

It can be easily shown that

kk
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Ideal Low-Pass filters and Bandlimited Signals

Ideally Bandlimited Signal
X

......

Ideal Low-Pass Filter
H

0

......

hBhB

BB
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Sampling and Periodic Spectra
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Signal Reconstruction using an Ideal Filter
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Derivation of the Sampling Theorem

x t x t s ts ( ) ( ) ( ) where s t t nT
n

( ) ( )

n
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k
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Signal Reconstruction Analytically for s=2B

)(sinc)(
2

1
)( BtdeHth tj

)()()(*)( ss XHtxth

n
nTtnTxBttx )()(*)(sinc)(

n
nTtBnTxtx ))((sinc)()(

Remark:  Note that the reconstruction filter interpolates between the 

samples with sinc functions - hence the name interpolation filter.
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ALIASING (UNDERSAMPLING)  s<2B

the signal can not be recovered perfectly even with an ideal filthe signal can not be recovered perfectly even with an ideal filter ter 

only a distorted version of the signal can be recoveredonly a distorted version of the signal can be recovered

......

0

)(sX

B s s2B

aliasingaliasing

2007 Copyright 2007 ©Andreas Spanias I-64

Oversampling s>>2B

...

0

)(sX

B s s2s B

Guard bandsGuard bands

OversamplingOversampling relaxes the requirements on relaxes the requirements on antialiasingantialiasing filtersfilters

It is used in It is used in // (( // )  A)  A--toto--D convertersD converters
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Non-ideal Considerations of Sampling 

•• There are no ideal impulses in practice There are no ideal impulses in practice -- instead finite amplitude and instead finite amplitude and 

finite duration periodic pulses are used (not a big problem)finite duration periodic pulses are used (not a big problem)

•• All realAll real--life signals are not bandlife signals are not band--limitedlimited

•• There are no ideal LPFThere are no ideal LPF

•• Aliasing is always present and can be viewed as noise in the sigAliasing is always present and can be viewed as noise in the signalnal

•• Typically we use Typically we use antialiasingantialiasing filters that limit aliasing noise several 10s filters that limit aliasing noise several 10s 

of of dBsdBs under the useful signal energyunder the useful signal energy

•• Practical Rule:  Quantization noise reduces generally 6 dB per aPractical Rule:  Quantization noise reduces generally 6 dB per added bit dded bit 

of resolution, e.g., at 16 bits we have approximately 96 dB SNR.of resolution, e.g., at 16 bits we have approximately 96 dB SNR.

Therefore we could built an Therefore we could built an antialiasingantialiasing filter that keeps aliasing noise filter that keeps aliasing noise 

under the quantization noise by at least 6 dB.under the quantization noise by at least 6 dB.

•• BandpassBandpass signals can be sampled more efficientlysignals can be sampled more efficiently
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Continuous Linear Systems

a x1(t)+ b x2(t) Linear

System

In a linear system if we superimpose two distinct input signals x1(t)
and x2(t) we get an output that consists of the superposition of the 

responses to each  individual input, i.e., 

x2(t) y2(t)Linear

System

x1(t) y1(t)Linear

System

a y1(t)+ b y2(t)
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Example : RC Circuit

Assuming zero 

initial conditions
y(t)

R

C
x(t)

1

0

222

1

0

111

)(
1

)()(

)(
1

)()(

dx
c

txRty

dx
c

txRty

Note that: )()()( 21 tytyty
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Remarks on Continuous Linear Systems

•Analysis of continuous linear systems (CLS) relies on the theory of 

linear differential equations (LDE). 

•The transient and steady-state responses of a CLS are obtained from 

the homogeneous and particular solutions  respectively of the LDE.

•The output of a system can be obtained from the convolution 

integral of its impulse response convolved with the input 

•The frequency response of a linear system is defined as the steady-

state response to a spectrum of sinusoids.  

•The steady-state output of a linear system due to a sinusoidal input 

is a sinusoid of the same frequency but phase shifted and amplitude 

scaled.
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Example

Differential equation:

dy t
dt RC

y t
RC

x t
( )

( ) ( )
1 1

Transfer function:

H s
sRC

( )
1

1

x(t)

R

C
i(t) y(t)

Frequency response function:

RCj
H

1

1
)(

)sin()( ttx
then

))(sin()()( HtHty ss

if sinusoid in sinusoid in 

sinusoid outsinusoid out
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Sin In /  Sin Out

LTI 

system
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Continuous Linear Systems  (Cont.)

x(t)
h(t)

y(t)

The output is obtained by convolving the input x(t) and the impulse

response h(t) of the system, that is:

y t h x t d h t x t( ) ( ) ( ) ( ) * ( )

For a causal system and causal input:

t

dtxhty
0

)()()(

DEMO
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Example - Impulse Response

Consider the circuit below with R=1M, C=1x10-6

dh t
dt RC

h t
RC

t
( )

( ) ( )
1 1

The solution: h t
RC

e e
t

RC t( )
1

for t  > 0

x(t)

R

C
i(t) y(t)

..

t
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Example - Convolve and obtain an output

Consider the RC with impulse response

and the input x t u t u t( ) ( ) ( )1

)()( tueth t

1for)(

10for1)(

)1(

1

0

teedety

tedety

tt
t

t

t
t

.... t

.... t
.. ....

* = t
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Convolution of Pulses

*

1 t t2

1 1

x(t) h(t)

t2

1

y(t)

=

1000 3

*

1 t t2

1 1

x(t) h(t)

t2

1

y(t)

=

1000 3


