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The Z-Transform in DSP
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Poles and Zeros of  H(z)

In general the transfer function is rational;  it has a numerator and a 
denominator polynomial. 

The roots of the numerator and denominator polynomials are called the 
zeros and the poles respectively. 

Pole-zero decompositions of H(z) are quite useful and provide intuition in 
signal analysis and filter design.
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where G is a gain factor
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Example: Poles and Zeros of  H(z)
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Example:  Poles-Zeros of a Second Order System
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Note that the filter 
coefficients are 
real valued and 
therefore  poles 
and zeros occur in 
complex
conjugate  pairs.
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Poles and Zeros and Stability

The location of the poles determines the stability of the filter.
In fact, for stability all the poles of a causal filter must be inside 

the unit circle, that is

pi 1 for    all    i = 1, 2, . . . , M

IIR filters may be all-pole or pole-zero and stability is always a 
concern.    FIR or all-zero* filters are always stable.

(* depending on the way the transfer function is normalized the term all-zero for FIR systems may be imprecise because 
there may be poles located at zero in an FIR system - similarly an “all-pole” IIR may have zeros located at zero)
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The Frequency Response Function

The transfer function is
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The Frequency Response Function (Cont.)

The frequency response function and is a complex and periodic
With period 2 . The normalized frequencies are associated to the 
sampling frequencies  fs by

sf
fT 2

where fs is the sampling frequency and f is any frequency of 
interest.  In practice, one detemines the frequency response up to 
half the sampling frequency (fold-over frequency).

rad rad/s

Sampling period

Sampling frequency
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The Frequency Response Function (Cont.)

0 2

0 fs/2 fs

Foldover Frequency

•The frequency response is usually plotted w.r.t. normalized frequencies ( )

•The frequency response is periodic with period  fs (2 )

•Since frequencies of interest are up to the bandwidth of the analog signal 

the spectrum is usually plotted up to  fs/2, ( ) the foldover frequency
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The Frequency Response and Poles and Zeros

The magnitude frequency response function
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•Poles tend to create peaks in the magnitude frequency response 

•Zeros tend to create valleys in the magnitude frequency response

•Selective filters are designed efficiently by placing poles close to 
the unit circle

•Sharp notches are achieved efficiently with zeros placed very 
close to the unit circle

•if restricted to an all-pole filter a sharp notch in the frequency 
response will require high order design (many poles). 

•if restricted to an all-zero (FIR) filter a sharp (high Q) peak in the 
frequency response will require many zeros (long impulse 
response or high order FIR). 

Remarks on Effects of Poles and Zeros on H(ej )
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Z plane and Frequency Magnitude Response

lm
X

X

0

0

polesX
zeros0

Re

Frequency Index (Theta=2*PI*Index/128)
M

ag
ni

tu
de

 H
(z

)

0.5

1.0

1.5

2.0

0.0
32 64 96 1280

0 2

0 fs/2 fs

Foldover Frequency

Magnitude Response

FFT index

2006 Copyright 2006 ©Andreas Spanias 10-12-12

Zero Locations and Frequency Response
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Moving zeros towards the unit circle creates sharper valleys
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Pole Locations and Frequency Responses
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As the poles move towards the unit circle we get sharper peaks 
and if the poles are placed on the unit circle we get an oscillator.
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Computing Filter Responses Using the 
Inverse Z-Transform

Partial Fractions: Given a the transfer function
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Inverse Z-Transform

The coefficients cj are found using partial fractions, and given the 
transform pairs:
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as well as the ROC, one can find the sequence corresponding to H(z).  
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Partial Fractions

Given a rational function:
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where ci are constants to be determined
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Partial Fractions Example

Given the second order function

Use partial fractions to write H(z) as :
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Partial Fractions Example (Cont.)

and given the ROC
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If the ROC is defined differently then the time domain sequences
will be different. 
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Partial Fractions Example  (Cont.)

For example, ROC: 1
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Partial Fractions Example (Cont.)
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Inverse Z-Transform - Repeated Poles

Given a rational function:
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Inverse Z-Transform using the Residue Theorem

We will restrict our discussion to causal sequences. Extension to non-
causal is straight-forward. Given the z-transform:
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Inverse Z-Transform using the Residue Theorem 
(Cont.)

If the integration is counterclockwise on a contour which is within 
the ROC and includes the unit circle, then
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Note the similarity with the inverse DTFT which is a special case of the z transform
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Inverse Z-Transform using the Residue Theorem 
(Cont.)

Cauchy’s residue theorem states that for rational polynomials X(z) the
integral above can be computed as a sum of residues, that is given:
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Inverse Z-Transform using the Residue Theorem (Cont.)

For poles of multiplicity m
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Inverse Z-Transform using the Residue Theorem
(Cont.)
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Example: Steady-State and Transient Response 
of Digital Filters Using the inverse z-transform

Consider the first order IIR filter
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Example: Steady-State and Transient Response 
(Cont.)
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Example:Steady-State and Transient Response
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