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Design of FIR Digital Filters;
LINEAR PHASE
Lecture 13-15

Andreas Spanias
spanias@asu.edu
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FIR Digital Filters
Advantages:

Linear Phase Design
Quite Efficient for designing notch filters
Always Stable

Disadvantages:
Requires High Order for Narrowband Design

Applications:
Speech Processing, Telecommunications
Data Processing, Noise Suppression, Radar
Adaptive Signal Processing, Noise Cancellation, Echo 

Cancellation, Multipath channels
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FIR Digital Filters
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FIR Filter Frequency Response
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FIR Filter Design

1. LINEAR PHASE DESIGN

2. FOURIER SERIES DESIGN

3. ZERO PLACEMENT

4. FREQUENCY SAMPLING

5. LEAST SQUARES

6. IMPLEMENTATIONS
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LINEAR PHASE DESIGN

Linear Phase (constant time delay) FIR filter design is important 
in pulse transmission applications where pulse dispersion must 
be avoided. The frequency response function of the FIR filter is
written as:
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GROUP DELAY

The time delay or group delay of a filter is defined as

d
d )(

therefore if                    is a linear function of         then is a
constant.

is given in terms of samples
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LINEAR PHASE AND IMPULSE RESPONSE 
SYMMETRIES

It can be shown that linear phase is achieved if

)()( nLhnh

where h(n) is the impulse response of the filter. For L = odd
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LINEAR PHASE DESIGN

if we define the pseudomagnitude
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hence the phase response is piecewise linear.
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SYMMETRIC AND ANTI-SYMMETRIC 
LINEAR PHASE FILTERS

Two Anti-symmetries for  L=even  or L=odd for
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Two Symmetries for  L=even  or L=odd for
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EXAMPLES OF SYMMETRIES
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EXAMPLES OF PHASE AND  SYMMETRY IN h(n)
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Note that for )()( nLhnh

then )()( 1zHzzH L

Hence for L=odd and z = -1 then

)1()1()1( HH L

Thus the filter must have a zero at               and is therefore not
adequate for high-pass filtering.

HPF USING CERTAIN LINEAR PHASE FILTERS
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Note that for )()( nLhnh

then )()( 1zHzzH L

Hence any  L and z = 1 then

)1()1( HH

Thus the filter must have a zero at               and is therefore not
adequate for low-pass filtering.

0

LPF USING CERTAIN LINEAR PHASE FILTERS
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Design of FIR Digital Filters
Lecture 14 - FIR DESIGN USING 
THE FOURIER SERIES

Andreas Spanias
spanias@asu.edu
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Design Using the Fourier Series

In filter design, there is an ideal transfer function Hd(z) that is
approximated by H(z). For example for a low-pass filter, an 
ideal frequency response is given below:

We like to minimize the mean square error, i.e.,
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Design Using the Fourier Series (Cont.)

Recalling that in general
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Minimization of the integral above leads to an h(n) sequence that is
precisely equal to the sequence of Fourier series coefficients 
characterizing Hd(z). The resultant impulse response sequence is a 
sampled truncated sinc function.

2006 Copyright 2006 ©Andreas Spanias 13-16-18

Fourier Series Design Example

For the ideal low pass filter the impulse response sequence is an 
infinite length sampled sinc function. Lets say the sampling 
frequency is 8KHz and we wish to have a cutoff frequency at 
2KHz.  This results in
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Fourier Series Design Example  (Cont.)
The ideal impulse response hd(n) is given by
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For an FIR filter of 11 coefficients
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This impulse response is not causal, however a shift operator of 5
delays (z-5) will convert it into a causal one. 
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REALIZATION
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Fourier Series Design Example  (Cont.)
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Fourier Series Design Example  L=32
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Fourier Series Design Example  L=64
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Truncating with Hamming Window  L=64

Hamming(L)*
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F.S. Design Rectangular vs Hamming Window - L=64
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Truncating in time- frequency convolution and F.S. design

•The main-lobe width determines transition characteristics

•The sidelobe level determines rejection characteristics

Ideal LPFNarrow mainlobe=
Narrower transition

Wide mainlobe =
Wide transition
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Notes On Fourier Series Design

•The design performed in the previous example involved truncation
of an ideal symmetric impulse response.A symmetric impulse 
response produces a linear phase response.

•Truncation involves the use of a window function which is 
multiplied  with the impulse response. Multiplication in the time 
domain maps into frequency-domain convolution and the spectral
characteristics of the window function affect the design. 

•The main-lobe width determines transition characteristics

•The sidelobe level determines rejection characteristics
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Design of FIR Digital Filters
Lecture 15 - FIR DESIGN USING 
THE KAISER WINDOW

Andreas Spanias
spanias@asu.edu
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DEFINING DESIGN SPECIFICATIONS
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DESIGN USING THE KAISER WINDOW

The Kaiser window is parametric and its bandwidth as well as its sidelobe
energy can be designed. Mainlobe bandwidth controls the transition 
characteristics and sidelobe energy affects the ripple characteristics. 
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=  L/2 ; associated with the order of the filter

is a design parameter that controls the shape of the window

I0(.) is a zeroth Bessel function of the first kind
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DESIGN USING THE KAISER WINDOW (Cont.)
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25 terms from the Bessel function are sufficient
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EXAMPLES OF KAISER WINDOW
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KAISER WINDOW DESIGN EQUATIONS
Given fp, fs, T and dp, ds determine the FIR filter coefficients.

Tff
A

dpds

ps )(2
log20

),min(

10

The filter order is )2(
285.2

8AL

0 1 1 0 2 8 7 5 0
0 5 8 4 2 2 1 0 0 7 8 8 6 2 1 2 1 5 0
0 2 1

0 4

. ( . ) ,

. ( ) . ( ) ,
,

.

A A
A A A

A

and the kaiser parameter          is  given by

2006 Copyright 2006 ©Andreas Spanias 13-16-34

DESIGN PROCEDURE

1. Determine the cutoff frequency for the ideal Fourier Series
method.

f
f f

c
s p

2
2. Design the ideal LPF using the Fourier Series.
3. Design the Kaiser window
4. Shift and truncate the ideal impulse response

LnLnhnwnh dLPF 0,
2

)()(

Note that this procedure can be generalized for the design of 
BPF, HPF, and BSF.
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Design by Zero-Placement

As zeros are placed towards the unit circle the frequency 
response  magnitude decreases at and in the vicinity of  the 
frequency of the zeros.  
.

o

o

foldover
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Design by Zero-Placement

Example: Design a linear phase FIR filter for 60Hz interference
cancellation, that will pass a 10Hz signal of interest without
attenuation. The sampling frequency is 500Hz. 
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A second order filter is sufficient, since only a zero pair on the 
unit circle is required for 60Hz cancellation. The 10Hz response
is adjusted with a gain factor.
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Design by Zero-Placement (Cont.)

A linear phase (steady state) design means symmetric impulse
response:
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Design by Zero-Placement (Cont.)
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Frequency Sampling Methods for FIR Filter design

The Frequency Sampling Method (FSM) involves: a) uniform 
sampling of a desired continuous frequency response function at N
points, b) applying the N-point inverse Discrete Fourier Transform
to obtain an N-point impulse response.

The FSM guarantees that the FIR frequency response matches that 
of the desired filter at the sampled points, however the response 
between the sampled points is different. If the desired filter 
function is due to an infinite impulse response then the FSM 
suffers also from time-domain aliasing.
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Min-Max and Parks-McClellan Optimum FIR Design

The Parks-McClellan design is based on Min-Max

Equiripple and linear phase design is possible

This class of methods involve minimizing the maximum error
between the designed FIR filter frequency response and a prototype 
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FIR Filter Design Using MATLAB+

IN THE MATLAB SP TOOLBOX

cremez - Complex and nonlinear phase equiripple FIR filter design.
fir1       - Window based FIR filter design - low, high, band, stop, multi.
fir2       - Window based FIR filter design - arbitrary response.
fircls - Constrained Least Squares filter design - arbitrary response.
fircls1    - Constrained Least Squares FIR filter design - low and highpass
firls - FIR filter design - arbitrary response with transition bands.
firrcos - Raised cosine FIR filter design.
intfilt - Interpolation FIR filter design.
kaiserord - Window based filter order selection using Kaiser window.
remez - Parks-McClellan optimal FIR filter design.
remezord - Parks-McClellan filter order selection.

+ MATLAB is registered trade mark of the MathWorks
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FIR Filter Realizations

Direct Realizations L
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•Require multiply accumulate instructions
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FIR Filter Cascade Realizations

Cascade Realizations
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•Reduced Effects from Coefficient Quantization and round-off
•In Fixed-Point implementation signal scaling must be 
done carefully at each stage
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Transform-Domain FIR Filter Realizations

A Transform domain realization is possible using the overlap
and save and the FFT. This yields computational savings for high
order implementations.  Input data is organized in 2N-point blocks 
and blocks are shifted N  points at a time.  The data blocks and
N zero-padded coefficients are transformed and multiplied and the
results is inverse transformed.  The last N-points are selected as the
result.  The blocks are updated and the  process is repeated.  
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Transform-Domain FIR Filter Realizations (2)

Implements an N-th order filter with two 2-N point FFTs

For processing N points complexity is reduced from
O(N2)  to O(Nlog2N)
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Simple and Smart FIR Filter Realizations

L

i

iz
L

zH
0

1)(

A simple L-tap filter can be built such that no multiplies are not used

This is a LPF  with linear phase – if L is radix 2 the division can be 
implemented with shifts  - below an example with L=16
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Reducing Complexity by realizing FIR as IIR

)1(
11)( 1

)1(

0 zL
zz

L
zH

LL

i

i

An FIR filter with all its coefficients equal can be realized by
looking at geometric series convergence and pole-zero cancellation

The IIR filter can be implemented using a simple difference equation
with long delay.  Precision may become a problem as the pole zero
cancellation is on the unit circle.
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Pole-zero cancellation in FIR to IIR transformation
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Modifying Filter Response by Subtractive Operations
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LPF eHeH
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Using simple operations like this we can transform prototype
LPF to HPF or BPF, etc.
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Implementing Efficiently Digital Cross-Over Using 
Subtractive Operations

LPF to tweeter

to wooferLinear Phase LPF
With delay L/2 samples

-
+

could also implement delay compensation   z –L/2
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Frequency Sampling
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Ideal frequency response 
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