

	FIR Digital Filters	
Advantages Linear Quite E Always	s: Phase Design Efficient for designing notch filters s Stable	
Disadvanta Requir	ges: res High Order for Narrowband Design	
Application Speech Data P Adapti Cano	ns: h Processing, Telecommunications Processing, Noise Suppression, Radar ive Signal Processing, Noise Cancellation, E cellation, Multipath channels	cho
2006	Copyright 2006 ©Andreas Spanias	13-16-2

LINEAR PHASE DESIGN Linear Phase (constant time delay) FIR filter design is important in pulse transmission applications where pulse dispersion must be avoided. The frequency response function of the FIR filter is written as: $H(e^{j\Omega}) = b_0 + b_1 e^{-j\Omega} + b_2 e^{-j2\Omega} + \dots + b_L e^{-jl\Omega}$ where $H(e^{j\Omega}) = M(\Omega)e^{j\Phi(\Omega)}$ $M(\Omega) = |H(e^{j\Omega})|, \quad \Phi(\Omega) = \arg(H(e^{j\Omega}))$

LINEAR PHASE AND IMPULSE RESPONSE SYMMETRIES

It can be shown that linear phase is achieved if

$$h(n) = h(L - n)$$

where h(n) is the impulse response of the filter. For L = odd

$$H(z) = \sum_{n=0}^{\frac{L-1}{2}} h(n)(z^{-n} + z^{-(L-n)})$$

$$H(e^{j\Omega}) = e^{-j\frac{\Omega L}{2}} \sum_{n=0}^{\frac{L-1}{2}} 2 h(n) \cos\left(\Omega\left(\frac{L}{2}-n\right)\right)$$
2006 Copyright 2006 ©Andreas Spanias 13-16-8

SYMMETRIC AND ANTI-SYMMETRIC LINEAR PHASE FILTERS

Two Anti-symmetries for L=even or L=odd for

$$h(n) = -h(L - n)$$

Two Symmetries for L=even or L=odd for

$$h(n) = h(L - n)$$

2006

Copyright 2006 ©Andreas Spanias

13-16-10

The ideal impulse response $h_d(n)$ is given by

$$h_d(n) = \frac{1}{2} \operatorname{sinc}\left(\frac{n\pi}{2}\right), n = 0, \pm 1, \pm 2, \dots$$

For an FIR filter of 11 coefficients

$$h(n) = \left\{ \dots, 0, 0, \frac{1}{5\pi}, 0, -\frac{1}{3\pi}, 0, \frac{1}{\pi}, \frac{1}{2}, \frac{1}{\pi}, 0, -\frac{1}{3\pi}, 0, \frac{1}{5\pi}, 0, 0, \dots \right\}$$

This impulse response is not causal, however a shift operator of 5 delays (z^{-5}) will convert it into a causal one.

2006

Copyright 2006 ©Andreas Spanias

13-16-19

•The design	performed in the previous example involved truncation
of an ideal	symmetric impulse response. A symmetric impulse
response pr	oduces a linear phase response.
•Truncation	involves the use of a window function which is
multiplied	with the impulse response. Multiplication in the time
domain maj	ps into frequency-domain convolution and the spectral
characterist	ics of the window function affect the design.
•The main-	lobe width determines transition characteristics
•The sidelo	be level determines rejection characteristics

DESIGN USING THE KAISER WINDOW

The Kaiser window is parametric and its bandwidth as well as its sidelobe energy can be designed. Mainlobe bandwidth controls the transition characteristics and sidelobe energy affects the ripple characteristics.

$$w(n) = \frac{I_0 \left(\beta \left[1 - \left(\frac{n - \alpha}{\alpha}\right)^2\right]^{1/2}\right)}{I_0(\beta)}, 0 \le n \le L - 1$$

 $\alpha = L/2$; associated with the order of the filter

 β is a design parameter that controls the shape of the window

 $I_0(.)$ is a zeroth Bessel function of the first kind

2006Copyright 2006 ©Andreas Spanias13-16-30

DESIGN PROCEDURE

1. Determine the cutoff frequency for the ideal Fourier Series method. f - f

$$f_c = \frac{f_s - f_p}{2}$$

- 2. Design the ideal LPF using the Fourier Series.
- 3. Design the Kaiser window
- 4. Shift and truncate the ideal impulse response

$$h_{LPF}(n) = w(n) h_d\left(n - \frac{L}{2}\right), \quad 0 \le n \le L$$

Note that this procedure can be generalized for the design of BPF, HPF, and BSF.

2006 Copyright 2006 ©Andreas Spanias 13-16-34

