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Discrete-time Linear Systems – Digital Filters
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The output is produced by convolving the input with the impulse response
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This operation can also involve a finite-length impulse response(FIR) 
sequence L
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An FIR filter is programmed using a multiply-accumulate instruction
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Some Definitions

•A digital filter is linear if it has the property of 
generalized superposition

•A digital filter is causal if it non anticipatory,
i.e., the present output does not depend on future 
inputs.

•All real-time systems are causal. 

• Non-causalities arise in image processing where 
the signal indexes are spatial instead of temporal. 

• Unless otherwise stated all systems in this 
course will be assumed causal
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Some More  Definitions
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x(n)+x(n-1)

;signal scaling by a 
filter coefficient

;signal addition
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IIR  Digital Filter Structure
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FIR Digital Filter Structure
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Two i/p-o/p  Equations for Digital Filters
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One can compute the output using the convolution sum
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or by using the difference equation
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Remark:  The impulse response h(n) can be determined by solving 
the difference equation.
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Unit Impulse

The analysis of digital filters in the frequency domain is facilitated
using sinusoids. In the time domain a unique input signal is used
for analysis, namely the unit impulse. That is defined as:
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Signal Representation with Unit Impulses

Any discrete-time signal may be represented by a linear combination
of unit impulses

is represented by:
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Impulse Response

The response of a digital filter to a unit impulse is known as 
impulse response and is given by
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Finite-Length Impulse Response (FIR)

If the digital filter has no feedback terms the impulse response is
finite length
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Note that

Remark:  The filter has a finite-length 
impulse response and is called FIR.  The 
values of the impulse response sequence 
are the coefficients themselves.  The filter 
is always stable.
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Example – The Moving Average Filter
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Remark:  The moving average is essentially a low-pass (smoothing) 
filter. Later on we will see that  this filter is also optimal in 
estimation problems.
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Infinite-Length Impulse Response (IIR)

If the digital filter has feedback terms then the impulse response is infinite 
length
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Remark:  Note that is the coefficient a1 has magnitude larger than 
one the the impulse response will go to infinity and hence the filter 
would be unstable.
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IIR – Another First Order Example
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Remark:  This particular IIR filter is also a low-pass filter 
behaving in similar manner like the the averaging FIR filter. 
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IIR – Another First Order Example (Plot)
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Impulse Response of M-th Order IIR Filters

We have noticed that for a first order causal IIR filter

the impulse response, assuming distinct roots, is
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For an M-th order causal IIR filter the impulse response 
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Remark:  c1, c2, ..  are constants.  p1., p2,… are the poles of the 
filter.  Note that if all the poles have magnitude less than one
then the filter is stable.
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Impulse Response and Causality

A digital filter is causal if the output depends on present and past 
samples, as opposed to dependence on future samples. 

A causal digital filter is described by a causal impulse response, i.e.,
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therefore
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Impulse Response and Stability

Bounded Input Bounded Output (BIBO) stability is defined as
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Transient and Steady State Response of Digital Filters

•Digital Filters have memory and hence they have
transient and a steady-state response

•An FIR filter has L memory elements keeping 
past data.  Therefore it will take L samples to 
reach steady state

•For an IIR filter the transient state is determined 
by solving the difference equation. 
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Example of Transient and Steady State Response
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Transient Response of IIR Filters

The transient response for an IIR filter is of the form:
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ci ,   i = 1, 2, . . . , m are constants evaluated using initial conditions 

pi ,   i = 1, 2, . . . , m are the poles of the filter which are determined
by solving the equation below 
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Steady-State Sinusoidal Response of
Digital Filters

A special case of interest is the steady-state response to input sinusoids 
and is formulated as follows. For the IIR filter

The frequency response function is given by: 

jM
M

jj

jL
L

jj
j

eaeaea
ebebebbeH

...1
...)( 2

21

2
210

M

i
i

L

i
i inyainxbny

10
)()()(



2006 Copyright 2006 ©Andreas Spanias Lecture 4&5  - 23

Steady-State Sinusoidal Response of
Linear Discrete Systems  (Cont.)

The frequency response function is periodic and an example of the
steady state sinusoidal response is given below

if:
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;normalized frequency
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Example of Steady State Sinusoidal Response
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The filter is excited by a 500 Hz sinusoid and the
Sampling rate is 2000Hz.
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Frequency  Response Plot
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