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Discrete-time Linear Systems — Digital Filters

x(n) by Y@

The output is produced by convolving the input with the impulse response

o0
y(n)= Y h(m)x(n—m) = h(m)*x(m)
m=—00
This operation can also involve a finite-length impulse response(FIR)

y(n) = Z h(m)x(n—m)

An FIR filter is programmed using a multiply-accumulate instruction
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Some Definitions

A digital filter is linear if it has the property of
generalized superposition

*A digital filter is causal if it non anticipatory,
1.e., the present output does not depend on future
inputs.

*All real-time systems are causal.

» Non-causalities arise in image processing where
the signal indexes are spatial instead of temporal.

* Unless otherwise stated all systems in this
course will be assumed causal
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Some More Definitions

x(n)  x(n-1) x(n) x(n-1)
— T or — ' ;unit delay

n b
X)) ling by a

I filter coefficient
x(n)
\/‘@— x(n)+x(n-1) ;signal addition

x(n-1)
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IIR Digital Filter Structure
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FIR Digital Filter Structure

¥(n)

p(n) = bx(n—i)
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Two i/p-o/p Equations for Digital Filters

X(n) 0

One can compute the output using the convolution sum
o0 o0
y()y= Y h(m)x(n—m)= 3 x(m)h(n—m)
m=—o0 m=—o0

or by using the difference equation

y(n):Zbix(n_i)_Zaiy(n_i)

Remark: The impulse response /(n) can be determined by solving
the difference equation.
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Unit Impulse
The analysis of digital filters in the frequency domain is facilitated

using sinusoids. In the time domain a unique input signal is used
for analysis, namely the unit impulse. That is defined as:

5(n)

P —p
5(”):{ 1) for n=0

elsewhere
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Signal Representation with Unit Impulses

Any discrete-time signal may be represented by a linear combination

of unit impulses x(n)
15 12
T 0.5
— o0 o T oo o -0—
! 011 EREE - n
- 0.5 e
is represented by: -25

x(n)=-50(n+2)+156(n+1)+256(n)
—o(n—-1)+56(n—-2)-256(n-3)
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Impulse Response

The response of a digital filter to a unit impulse is known as
impulse response and is given by

h(n)=b,06(n)+bo(n—1)+...+b,6(n—L)—
ah(n-1)—a,h(n-2)—...—a,,h(n— M)

5(n) h(n) h(n)
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Finite-Length Impulse Response (FIR)

If the digital filter has no feedback terms the impulse response is
finite length

h(n)=b,0(n)+bo(n—-1)+...+b,6(n—L)

Note that

h (0) = bO Remark: The filter has a finite-length
impulse response and is called FIR. The

h (1) = bl values of the impulse response sequence
are the coefficients themselves. The filter

— is always stable.
h(2)=b,
h(L)=b,
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Example — The Moving Average Filter
1 L
y(n)=—2 x(n-1i
L+1 ;

h(n):ﬁ{é(;m5(n—1)+...+5(n—L)}

h(n):L 0<mn<lL
L+1

Remark: The moving average is essentially a low-pass (smoothing)
filter. Later on we will see that this filter is also optimal in
estimation problems.
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Infinite-Length Impulse Response (IIR)

If the digital filter has feedback terms then the impulse response is infinite
length

h(n) = ZL: bo(n—i)— i a.h(n—1)
Example: h(n)=0(n)—ah(n-1)

h0)=1 h()=-a, hQ)=a’ = hn)=(-a)

Remark: Note that is the coefficient @, has magnitude larger than
one the the impulse response will go to infinity and hence the filter
would be unstable.
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IIR — Another First Order Example

5(n) ——0.2— @+
0 Q)
0.8)

h(n)=0.26(n)+0.8h(n—-1)
h(n)=0.2 (0.8)" n=0

Remark: This particular IR filter is also a low-pass filter
behaving in similar manner like the the averaging FIR filter.
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IIR — Another First Order Example (Plot)

h(n)=0.2 (0.8)" n>0
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Impulse Response of M-th Order IIR Filters

We have noticed that for a first order causal IIR filter
y(n)y=x(n)—ay(n-1) is h(n)=(-a)" n=0
For an M-th order causal IIR filter the impulse response
L M
y(n) = Z bix(n_l)_Z a,y(n—i)
i=0 i=1

the impulse response, assuming distinct roots, is

h(n)=c p +c,ps+...4c,py,;, n=0

Remark: ¢, c,, .. are constants. p;., p,,... are the poles of the
filter. Note that if all the poles have magnitude less than one
then the filter is stable.
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Impulse Response and Causality

A digital filter is causal if the output depends on present and past
samples, as opposed to dependence on future samples.

y(n)ZZbiX(n—l')—Zaiy(n—i)

A causal digital filter is described by a causal impulse response, i.e.,

/’l(l’l) =0 Sfor n<(

therefore
o0
y(n) =) h(m)x(n—m)
m=0
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Impulse Response and Stability

For the causal digital filter
o0
y(n)= D h(m)x(n—m)
m=0

Bounded Input Bounded Output (BIBO) stability is defined as

0

Y |h (k)| < o

k=0

The condition above is guaranteed if

‘p i ‘ < 1 for all i=12,...,. M
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Transient and Steady State Response of Digital Filters

*Digital Filters have memory and hence they have
transient and a steady-state response

*An FIR filter has L memory elements keeping
past data. Therefore it will take L samples to
reach steady state

*For an IIR filter the transient state 1s determined
by solving the difference equation.
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Example of Transient and Steady State Response

— ¥n)
u(n)=1 n=0 uln) ——0.2)— ®+

y(n)=y"(n)+y*(n)=-0.8(0.8)" +1 0.9)
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Transient Response of IIR Filters

The transient response for an IR filter is of the form:
tr _ n n n
yi(n)=cpl +c,py +otCypy

¢; , i=1,2,...,m areconstants evaluated using initial conditions

p; ,» i=1,2,...,m are the poles of the filter which are determined
by solving the equation below

p" +ap" ' +a,p"*+..+a, p+a, =0

2006 Copyright 2006 ©Andreas Spanias Lecture 4&5 -21

Steady-State Sinusoidal Response of
Digital Filters

A special case of interest is the steady-state response to input sinusoids
and is formulated as follows. For the IIR filter

L M
y(n) = Zbix(n—i)—Z a,y(n—i)
i=0 i=1
The frequency response function is given by:
-jQ -j2Q —jLQ
b,+be " +be’ " +..+be”’

—jQ -j2Q —jMQ
l+ae” +a,e”’ /

H(ejQ)z
+.+a,e
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Steady-State Sinusoidal Response of
Linear Discrete Systems (Cont.)

The frequency response function is periodic and an example of the
steady state sinusoidal response is given below

if:
x(n) = sin(n€2)

then:

¥ (n) = |H (e")|sin(Qn + £H ("))

27

Q=— ;normalized frequency

1,
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Example of Steady State Sinusoidal Response

— y(n)

0.2

- .
+ H(e™ )= :
(™) 1—0.8¢7/%

03

The filter 1s excited by a 500 Hz sinusoid and the
Sampling rate is 2000Hz.

x(n)=snm2nn500/2000)=sﬁmf§3)

AN 02
= sin(— +arg(———
y-(n) H 08 | (2 e O&ﬁ)
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Frequency Response Plot

. 0.2
H(Ee™)y=—" _
(™) 1-0.8¢
e
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