

Νευροφυσιολογία και Αισθήσεις

Διάλεξη 10 Χημικές Αισθήσεις (Chemical Senses)

Introduction

Animals depend on the chemical senses

- Play a role in finding direction, seeking prey, avoiding predators and sexual attraction to a mate
- Less developed and important in humans
 - Really? How much do you spend on perfumes and colognes

Chemical sensation

 Oldest and most common sensory system

Chemical senses

- Chemoreceptors (internal environment, e.g. O2, CO2, acidity, etc.)
- Gustation
- Olfaction

The Basics Tastes

- Saltiness, sourness, sweetness, bitterness, and umami
- Examples of correspondence between chemistry
 - Sweet—sugars like fructose, sucrose, artificial sweeteners (saccharin and aspartame)
 - Bitter—ions like K⁺ and Mg²⁺, quinine, and caffeine
- Advantage Survival
 - Poisonous substances often bitter

Biomedical Imaging and Applied Optics Laboratory

The Basics Tastes

- Steps to distinguish the countless unique flavors of a food
 - Each food activates a different combination of taste receptors
 - · Distinctive smell
 - · Other sensory modalities
- Taste Perception influenced by
 - Information derived from other receptors, especially odor
 - Temperature and texture of food
 - Psychological experiences associated with past experiences with food

The Organs of Taste

Areas

 Tongue, mouth, palate, pharynx, and epiglottis

Areas of sensitivity on the tongue

- Tip of the tongue
 - Sweetness
- Back of the tongue
 - Bitterness
- Sides of tongues
 - · Saltiness and sourness
- Most of the tongue is sensitive to all

Biomedical Imaging and Applied Optics Laboratory

5

The Organs of Taste

Papillae

- Foliate papillae
- Vallate papillae
- Fungiform papillae
- 1 to several hundred taste buds
- 2000-5000 taste buds/person

Taste buds

• 50-150 taste receptor cells

Threshold concentration

Just enough exposure of single papilla to detect taste

Tastes Receptor Cells

- Continually regenerating (~2 weeks) receptor cells
- Chemically sensitive parts
 - Apical ends→ Microvilli→ Taste pore
- Receptor potential
 - Voltage shift
 - Usually depolarizing
- If the stimulation is strong enough (can even be AP) → release of neurotransmitter → AP in postsynaptic neuron
- Some receptor cells are nonspecific
 - · Respond to more than one taste

7

Mechanisms of Taste Transduction

• Transduction process

- Taste stimuli (tastants)
 - Pass directly through ion channels
 - · Bind to and block ion channels
 - Bind to G-protein-coupled receptors

Saltiness (NaCl)

- Threshold: 10 mM
- · Salt-sensitive taste cells
 - Special Na⁺ selective channel
 - · Blocked by the drug amiloride
- Anions affect the taste
 - Larger anion → inhibits taste of Na+ or has its own taste
 - · Mechanism not well understood

Mechanisms of Taste Transduction

Sourness

- Low pH → acidity or sourness
- Protons causative agents of acidity and sourness
- Two mechanisms
 - Enter through Na+ channel
 - Block K+ channels
- Low pH probably affects many cellular processes

Biomedical Imaging and Applied Optics Laboratory

9

Mechanisms of Taste Transduction

Bitterness

- Families of taste receptor genes
 - TIR and T2R
 - Use second messenger
 - ~30 different types
- Can not distinguish between them
 - Each cell has almost all receptors
- Very sensitive to poisons
 - 10 nM

10

Mechanisms of Taste Transduction

Sweetness

- Sweet tastants natural and artificial
- Sweet receptors
 - · Similar to bitter receptors
 - Formed from two proteins T1R2+T1R3
- Why signals not confused with bitter?
 - Expressed in different taste cells and connect to different axons

Biomedical Imaging and Applied Optics Laboratory

11

Mechanisms of Taste Transduction

Umami

- Meaty or savory taste
 - Also the MSG receptor
- Umami receptors:
 - · Detect amino acids
 - T1R1+T1R3

Central Taste Pathways

- Medulla: Gustatory nucleus
 - Point where taste axons bundle and synapse
- Thalamus: Ventral posterior medial nucleus (VPM)
 - Deals with sensory information from the head
- Cortex: Primary gustatory cortex
 - Receives axons from VPM taste neurons

Localized lesions

- Ageusia- the loss of taste perception
- Gustation
 - Important to the control of feeding and digestion
 - Hypothalamus
 - Basal telencephalon

Biomedical Imaging and Applied Optics Laboratory

13

The Neural Coding of Taste

• Labelled line hypothesis

- Individual taste receptor cells for each stimuli
- In reality, neurons broadly tuned
- Population coding
 - Large number of broadly tuned responses
 - · Roughly labeled lines
 - Temperature
 - · Textural features of food

Pheromones

Smell— a mode of communication

- Important signals
 - · Reproductive behavior
 - · Territorial boundaries
 - Identification
 - Aggression

Vomeronasal Organ (VNO)

- Common in mammals but until recently was thought to nonexistent in humans
 - Governs emotional responses and sociosexual behaviors
- Located about half an inch inside human nose next to vomer bone
- · Detects pheromones
 - Nonvolatile chemical signals passed subconsciously from one individual to another
- Role in human behavior has not been validated
 - "Good chemistry" and "love at first sight"

Biomedical Imaging and Applied Optics Laboratory

15

The Organs of Smell

• Olfactory epithelium

- Olfactory receptor cells
 - 4-8 week lifecycle
- Supporting cells
- Basal cells
- Mucus
 - Mucopolysacharides
 - Enzymes
 - Antibodies (protection from viruses)
 - Odorant-binding proteins (concentration)
 - Etc

The Organs of Smell

Odorants

- Activate transduction processes in neurons
- Must be volatile and disolve in mucus
- Olfactory axons constitute olfactory nerve
- Cribriform plate
 - A thin sheet of bone through which small clusters of axons penetrate, coursing to the olfactory bulb
 - Blow to the head → Anosmia: Inability to smell
- Humans: Weak smellers
 - Small surface area of olfactory epithelium
 - 10 cm² (dog→ 170cm², 100x receptors)
 - Small number of receptors
 - 350 (rodents → 1000)

Biomedical Imaging and Applied Optics Laboratory

17

The Organs of Smell

Olfactory Receptor Neurons

- Olfactory Transduction
 - Notice the unusual Cl⁻ flow
- Olfactory response termination
 - Diffusion
 - · Enzymatic breakdown
 - cAmp activates other pathways
- Adaptation → Decreased response despite continuous stimulus

Central Olfactory Pathways

- Mapping on glomeruli
 - · Astonishingly accurate

19

Biomedical Imaging and Applied Optics Laboratory

Central Olfactory Pathways

- Axons of the olfactory tract
 - Unusually direct connections
 - Branch and enter the forebrain
- Neocortex: Reached by a pathway that synapses in the medial dorsal nucleus

Spatial and Temporal Representations of Olfactory Information

- Olfactory Population Coding
 - Combination of responses
- Olfactory Maps (sensory maps)
 - No spatial information in smell
 - Arranged in groups of responses
- Temporal Coding in the Olfactory System
 - Slow stimulus
 - Temporal coding and synchronicity between cells → quality

Biomedical Imaging and Applied Optics Laboratory

21

Επόμενη Διάλεξη ...

Διάλεξη 11 Ακουστικό και Αιθουσιαίο Σύστημα (Auditory and Vestibular Systems)