

Νευροφυσιολογία και Αισθήσεις

Διάλεξη 12 Σωματοαισθητικό Σύστημα (Somatosensory System)

Somatic Sensation

- Enables body to feel, ache, chill
- Sensitive to stimuli
- Responsible for feeling of touch, pain and temperature
- Somatic sensory system:
 Different from other systems
 - Receptors: Distributed throughout
 - Responds to different kinds of stimuli

• Types and layers of skin

- · Hairy and glabrous (hairless)
- Epidermis (outer) and dermis (inner)

Functions of skin

- · Protective function
- Prevents evaporation of body fluids
- Provides direct contact with world

Mechanoreceptors

- Sensitivity: 0.006 mm high x 0.04 mm wide
- Most somatosensory receptors are mechanoreceptors
- Types
 - · Pacinian corpuscles
 - · Ruffini's endings
 - · Meissner's corpuscles
 - Merkel's disks
 - · Krause end bulbs

Biomedical Imaging and Applied Optics Laboratory

Touch

• Characteristics of mechanoreceptors

- Receptive Fields
- Adaptation
 - · Role of onion-like structure

- Response of mechanoreceptors
 - Hair
 - · Sensitive to movement
 - Exquisitely sensitive in some animals
 - Response to vibration frequency
 - · Pancinian corpuscles
 - Meissner's corpuscles
 - · Ruffini's endings
 - Two-point discrimination
 - Importance of fingertips over elbow

Biomedical Imaging and Applied Optics Laboratory

5

Touch

• Primary Afferent Axons

- Aα, Aβ, Aδ, C
- C fibers mediate pain and temperature
- Aβ mediates touch sensations

• The Spinal cord

- Spinal segments (30)- spinal nerves within 4 divisions of spinal cord
- Sensory Organization of the spinal cord
 - Divisions
 - Cervical (C)
 - Thoracic (T)
 - Lumbar (L)
 - Sacral (S)

Biomedical Imaging and Applied Optics Laboratory

7

Touch

• The Spinal cord

- Dermatomes- 1-to-1 correspondence with segments
 - Shingles

• The Spinal cord

- Sensory Organization of the spinal cord
 - Division of spinal gray matter: Dorsal horn; Intermediate zone; Ventral horn
 - Myelinated Aβ axons (touchsensitive)

Dorsal Column–Medial Lemniscal Pathway

 Touch information ascends through dorsal column, dorsal nuclei, medial lemniscus, and ventral posterior nucleus to primary somatosensory cortex

Biomedical Imaging and Applied Optics Laboratory

9

Touch

• The Trigeminal Touch Pathway

Trigeminal nerves

· Cranial nerves

Somatosensory Cortex

- Primary
- Other areas
 - Postcentral gyrus
 - Posterior Parietal Cortex
- Brodmann's Area 3b (or S1): Primary somatosensory cortex
 - Receives dense input from VP nucleus of the thalamus
 - Neurons: Responsive to stimuli
 - Lesions impair somatic sensations
 - Electrical stimulation evokes sensory experiences

Biomedical Imaging and Applied Optics Laboratory

11

Touch

Somatosensory Cortex

- Cortical Somatotopy
 - Homunculus
 - · Importance of mouth
 - Tactile sensations: Important for speech
 - Lips and tongue: Last line of defense

Somatosensory Cortex

- Cortical Map Plasticity
- Remove digits or overstimulate

 examine somatotopy before

 and after
 - · Conclusions of experiments
 - Reorganization of cortical maps
 - Dynamic
 - Adjust depending on the amount of sensory experience

13

Touch

Somatosensory Cortex

- The Posterior Parietal Cortex
 - Involved in somatic sensation, visual stimuli, and movement planning
 - Agnosia
 - · Astereoagnosia
 - Neglect syndrome

Pain

Nociceptors

- Polymodal
- Mechanical
- Thermal
- Chemical

Pain and nociception

- Pain feeling of sore, aching, throbbing
- Nociception sensory process, provides signals that trigger pain

Nociceptors: Transduction of Pain

- Bradykinin
- Mast cell activation: Release of histamine
- Hyperalgeia
 - Painful damaged or sourrounding areas
 - Primary and secondary hyperalgesia
 - Bradykinin, prostaglandins, and substance P

Biomedical Imaging and Applied Optics Laboratory

15

Pain

Primary Afferents and Spinal mechanisms

- First pain and second pain
- Referred pain: Angina

Pain

Ascending Pain Pathways

- Differences between touch and pain pathway
 - · Nerve endings in the skin
 - · Diameter of axons
 - · Connections in spinal cord
 - Touch Ascends Ipsilaterally
 - Pain Ascends Contralaterally
- Spinothalamic Pain Pathway
 - · Cross at spinal level
- The Trigeminal Pain Pathway
 - Pain and temperature sensation of face
- The Thalamus and the Cortex
 - Touch and pain systems remain segregated
 - Pain and temperature information sent to various cortical areas

Biomedical Imaging and Applied Optics Laboratory

17

Pain

Touch, vibration, two-point discrimination, proprioception

Pain, temperature, some touch

Pain

• The Regulation of Pain

- Afferent Regulation
 - Hyperalgesia and down regulation? (i.e. rubbing skin around)

Biomedical Imaging and Applied Optics Laboratory

19

Pain

• The Regulation of Pain

- Descending Regulation
 - Periaquaductal gray matter
 - The endogenous opiates
 - Opioids and endomorphins

Temperature

- Thermoreceptors
 - "Hot" and "cold" receptors
 - Varying sensitivities
 - Perceive changes as low as 0.01 °C
 - Adaptation

• The Temperature Pathway

- Organization of temperature pathway
 - · Identical to pain pathway
- Cold receptors coupled to Aδ and C
- · Hot receptors coupled to C

Biomedical Imaging and Applied Optics Laboratory

Conclusion

- Sensory systems exhibit similar organization and function
- Sensory types are segregated within the spinal cord and cerebral cortex
- Repeated theme
 - Parallel processing of information
- Perception of object involves the seamless coordination of somatic sensory information

Επόμενη Διάλεξη ...

Διάλεξη 13 Κίνηση από τον Νωτιαίο Μυελό (Spinal Control of Movement)

23