

Νευροφυσιολογία και Αισθήσεις

Διάλεξη 14 Κίνηση από το ΚΝΣ (CNS Control of Movement)

Introduction

- The brain influences activity of the spinal cord
 - Voluntary movements
- Hierarchy of controls
 - Highest level: Strategy (goal of the movement)
 - Middle level: Tactics (series of muscle contractions)
 - Lowest level: Execution (activation of neurons and muscles)
- Sensorimotor system
 - Sensory information: Used by motor system

Descending Spinal Tracts

- Axons from brain descend along two major pathways
 - · Lateral Pathways
 - Ventromedial Pathways

Biomedical Imaging and Applied Optics Laboratory

Descending Spinal Tracts

The Lateral Pathways

- Voluntary movement → under direct cortical control
- Components
 - Corticospinal tract or Pyramidal tract
 - Rubrospinal tract
- The Effects of Lateral Pathway Lesions
 - Experimental lesions in corticospinal and rubrospinal tracts
 - Loss of fractionated movement of arms and hands
 - Stroke in corticospinal tract or primary cortex
 - Paralysis on contralateral side
 - · Significant recovery

Descending Spinal Tracts

The Ventromedial Pathways

- · Posture and locomotion
 - · Under brain stem control
 - Receive and integrate sensory information
- The Vestibulospinal tract
 - · Vestibular input
 - Balance of the head and keeping the eyes steady
- The Tectospinal tract
 - Retinal and Visual Cortex input
 - Head and eye movements to follow input
- The Pontine and Medullary Recticulospinal tract
 - Enhance or reduce antigravity reflexes

5

Descending Spinal Tracts

The Planning of Movement by the Cerebral Cortex

- Motor Cortex
 - Somatotopic organization
 - Area 4 and area 6 of the frontal lobe
- Area 4 = "Primary motor cortex" or "M1"
- Area 6 = "Higher motor area"
 - Two areas of similar functions
 - Motor maps in PMA and SMA
 - Premotor area (PMA) → proximal motor units
 - Supplementary motor area (SMA) → distal motor units

The Planning of Movement by the Cerebral Cortex

The Contributions of Posterior Parietal and Prefrontal Cortex

- Represent highest levels of motor control
 - Decisions made about actions and their outcome
- Posterior Parietal
 - · Perception of body and space image
 - · Area 5: Inputs from area S1
 - Area 7: Inputs from higher-order visual cortical areas such as MT
- Anterior frontal lobes
 - Abstract thought, decision making and anticipating consequences of action
 - Area 6: Actions converted into signals specifying how actions will be performed
 - Monitoring cortical activation accompanying voluntary movement (PET)
 - Results supported view of higher order motor planning
 - Area 6 was active even during mentally rehearsing a motion

The Planning of Movement by the Cerebral Cortex

Neuronal Correlates of Motor Planning

- Activity in motor areas of awake, behaving animals
 - · Area 6 important for planning movement
 - · "ready"- Parietal and frontal lobes
 - · "set"- Supplementary and premotor areas
 - "go"- subcortical input Area 6

· Lesions in area 6

- Inability to perform complex motor tasks = apraxia
- Ability to coordinate to sides of the body is impaired

Biomedical Imaging and Applied Optics Laboratory

Sensory

Motor

Area Area

9

The Basal Ganglia

Prefrontal

Cortex

· Basal ganglia

- Project to the ventral lateral (VLo) nucleus
- · Provides major input to area 6
- Large number of parallel circuits

Μέλανα ουσία

Also involved in memory and cognitive function

 Cortex Projects back to basal ganglia πλαγιοκοιλιακός Forms a "loop" πυρήνας Basal ganglia Corticoκερκοφόρος spinal πυρήνας Caudate Superior colliculus nucleus and vestibular nuclei φακοειδής . πηρύνας pathways Spinal cord ωχρή σφαίρα

υποθαλαμικοί

πυρήνες

10

The Basal Ganglia

• The Motor Loop: Selection and initiation of willed movements

- Origin of direct path: Excitatory connection from the cortex to cells in putamen
- · Cortical activation
 - · Excites putamen neurons
 - · Inhibits globus pallidus neurons
 - · Release cells in VLo from inhibition
- Activity in VLo boosts activity in SMA

Biomedical Imaging and Applied Optics Laboratory

Substantia

11

The Basal Ganglia

Basal Ganglia Disorders

- Hypokinesia and hyperkinesia
- · Parkinson's disease
 - · Symptoms: Bradykinesia, akinesia, rigidity and tremors of hand and jaw
 - · Organic basis: Degeneration of substantia nigra inputs to striatum
 - Dopa treatment: Facilitates production of dopamine to increase SMA activity
- Huntington's disease
 - Symptoms: Hyperkinesia, dyskinesia, dementia, impaired cognitive disability, personality disorder
 - Organic Basis: Profound loss of neurons in basal ganglia and other areas of brain
- Hemiballismus
 - Violent, flinging movement on one side of the body
 Organic Basis: Damage to the subthalamic nucleus

 Frontal cortex neuron

 Putamen

 Putamen

 Putamen

Initiation of Movement by the Primary Motor Cortex

Electrical stimulation of area 4

 Contraction of small group of muscle fibers

The Input-Output Organization of M1

- Betz cells: Pyramidal cells in cortical layer 5
- Two sources of input to Betz cells
 - · Cortical areas
 - Thalamus

Biomedical Imaging and Applied Optics Laboratory

13

Initiation of Movement by the Primary Motor Cortex

The Coding of Movement in M1

- Activity from several neurons in M1 encodes force and direction of movement
- Movement direction encoded by collective activity of neurons
 - Motor cortex: Active for every movement
 - Activity of each cell: Represents a single "vote"
 - Direction of movement: Determined by a tally (and averaging)
- The Malleable Motor Map
 - · Experimental evidence from rats
 - Microstimulation of M1 cortex normally elicits whisker movement cut nerve that supplies whisker muscles— Microstimulation now causes forelimb movement
 - Decoding M1 activity
 - Helps patients with severe damage to their motor pathways

The Cerebellum

Function

- Coordination of sequence of muscle contractions
- Ataxia
 - · Uncoordinated and inaccurate movements
 - Caused by cerebellar lesions
 - Symptoms
 - Dysynergia (decomposition of synergistic joint movement)
 - Dysmetric (innacuracy)
 - · Like alcohol intoxication

Biomedical Imaging and Applied Optics Laboratory

15

The Cerebellum

Anatomy of the Cerebellum

- Folia and lobules
 - Increased area → 50% of CNS neurons
- Deep cerebellar nuclei
 - · Relay cerebellar cortical output to brain stem structures
- Vermis
 - · Contributes to ventromedial pathways
- · Cerebellar hemispheres
 - · Contributes to lateral pathways

The Cerebellum

• The Motor Loop Through the Lateral Cerebellum

- Pontine nuclei (γεφυριδικός πυρήνας)
 - Axons from layer V pyramidal cells in the sensorimotor cortex form massive projections to pons
- Corticopontocerebellar projection
 - 20 times larger than pyramidal tract
- Function
 - Execution of planned, voluntary, multijoint movements
- Programming the Cerebellum
 - · Cerebellum- "brain inside"
 - · Process of learning a new skill
 - New motor program created to ensure smooth movement

Biomedical Imaging and Applied Optics Laboratory

17

Conclusion

Bagdatis Example

- · Walking: Ventromedial pathways
- · Ready to serve
 - Neocortex, ventromedial pathways
- Serve strategy
 - Sensory information engages parietal and prefrontal cortex and area 6
- Throw and hit
 - Increased basal ganglia activity (initiation)
 - SMA activity → M1 activation
 - Corticopontocerebellar pathways
 → Cerebellum
 - Cortical input to reticular formation → Release of antigravity muscles
 - Lateral pathway → engages motor neurons → action

Επόμενη Διάλεξη ...

Διάλεξη 15

Χημεία του Εγκεφάλου και της Συμπεριφοράς (Chemical Control of the Brain and Behavior)