Νευροφυσιολογία και Αισθήσεις

Διάλεξη 15

Χημεία του Εγκεφάλου και της Συμπεριφοράς (Chemical Control of the Brain and Behavior)

Introduction

Synaptic Connections

- Point-to-point
 - Mechanism to restrict synaptic communication
 - · Brief transmission
 - · Degradation of neurotransmitter
 - Presynaptic "autoreceptors"
- Three broad nervous system components
 - · Secretory hypothalamus
 - Autonomic nervous system (ANS)
 - · Diffuse modulatory systems

The Secretory Hypothalamus

Function → Homeostasis

- Different for hypothalamus and dorsal thalamus
- · Dorsal thalamus defect
 - · Blind spot, lack of feeling
- Hypothalamus defect
 - · Fatal disruption to body function

Homeostasis

- Regulatory process: Regulates body temperature and blood composition levels
 - Hypothalamus commands in cold weather
 - Shiver, goosebumps, turn blue
 - Hypothalamus commands in hot weather
 - · Turn red, sweat

Biomedical Imaging and Applied Optics Laboratory

3

The Secretory Hypothalamus

Structure and Connections of the Hypothalamus

- Lateral and Medial Zones
 - Output to brain stem and telencephalon
 - · Regulate behaviour
- Periventricular Zone
 - · control of circadian rhythms
 - · Input from retina
 - ANS control
 - · Neurosecretory action

The Secretory Hypothalamus

Posterior Pituitary

- Magnocellular cells → Two neurohormones
- Oxytocin
 - · Initiates child birth, lactation,
 - Cortex can suppress release
 - Positive feedback
 - · Pressure on cervix
 - · External stimuli
 - Negative feedback
 - · Child birth
 - · Lack of external stimuli
 - · Stress, anxiety
- Vasopressin
 - Regulate blood volume and salt concentration

Biomedical Imaging and Applied Optics Laboratory

The Secretory Hypothalamus

Regulation of blood volume and salt concentration

- Lower blood volume, increased salt concentration
 - Pressure receptors in CV system
 - Salt receptors in hypothalamus
- Kidneys → Renin → Angiotensin II
- Subfornical Organ (no BBB) → stimulation of hypothalamus
- Hypothalamus → ADH & thirst sensation

The Secretory Hypothalamus

Hypothalamic Control of the Anterior Pituitary

- Anterior lobe
- Controlled by parvocellular neurosecretory cells
 - · Secrete hypophysiotropic hormone
 - Pituitary cell receptor activation → Pituitary cells secrete or stop secreting hormones

Anterior Pituitary Hormones

· Wide range of action

HORMONE	TARGET	ACTION
Follicle-stimulating hormone (FSH)	Gonads	Ovulation, spermatogenesis
Luteinizing hormone (LH)	Gonads	Ovarian, sperm maturation
Thyroid-stimulating hormone (TSH); also called thyrotropin	Thyroid	Thyroxin secretion (increases metabolic rate)
Adrenocorticotropic hormone (ACTH); also called corticotropin	Adrenal cortex	Cortisol secretion (mobilizes energy stores; inhibits immune system; other actions)
Growth hormone (GH)	All cells	Stimulation of protein synthesis
Prolactin	Mammary glands	Growth and milk secretion

Biomedical Imaging and Applied Optics Laboratory

7

The Secretory Hypothalamus

Adrenal glands

Adrenal cortex and adrenal medulla

Adrenal Cortex

- Stress response → cortisol
 - · Negative feedback on pituitary
 - · Alterations in brain physiology

HORMONE	TARGET	ACTION
Follicle-stimulating hormone (FSH)	Gonads	Ovulation, spermatogenesis
Luteinizing hormone (LH)	Gonads	Ovarian, sperm maturation
Thyroid-stimulating hormone (TSH); also called thyrotropin	Thyroid	Thyroxin secretion (increases metabolic rate)
Adrenocorticotropic hormone (ACTH); also called corticotropin	Adrenal cortex	Cortisol secretion (mobilizes energy stores; inhibits immune system; other actions)
Growth hormone (GH)	All cells	Stimulation of protein synthesis
Prolactin	Mammary glands	Growth and milk secretion

8

- Divisions of autonomic nervous system (ANS)
 - Sympathetic division → "fight or flight"
 - Increased heart rate and blood pressure
 - · Depressed digestive function
 - · Mobilized glucose reserves
 - Parasympathetic division → "rest and digest"
 - Slower heart rate, fall in pressure
 - · Increased digestive functions
 - · Stop sweating

Biomedical Imaging and Applied Optics Laboratory

The Autonomic Nervous System

ANS Circuits versus Somatic Motor System

- ANS
 - Actions multiple, widespread, slow
 - Wide coordinated and graded control
 - Commands all tissue and organ except skeletal muscle
 - Outside CNS
 - · Disynaptic pathway
- Somatic
 - · Rapid and accurate
 - Only peripheral targets
 - Commands only skeletal muscle
 - Within CNS
 - Monosynaptic pathway

Sympathetic Nervous System	Parasympathetic Nervous System	
Fibers originate in thoracic and lumbar regions of spinal cord	Fibers originate from cranial and sacral areas of CNS	
Most preganglionic fibers are short	Preganglionic fibers are longer	
Long postganglionic fibers	Very short postganglionic fibers	
Preganglionic fibers release acetylcholine (Ach)	Preganglionic fibers release acetylcholine (Ach)	
Most postganglionic fibers release noradrenaline (norepinephrine)	Postganglionic fibers release acetylcholine	
(norepinephrine)		

11

The Autonomic Nervous System

The Enteric Division

- Location
 - Lining of esophagus, stomach, intestines, pancreas, and gallbladder
- Composition
 - Two complicated networksmyenteric (Auerbach's) plexus and submucous (Meissner's) plexus
- Function
 - Control physiological processes involved in transport, digestion of food
- Inputs
 - From brain via axons of the sympathetic and parasympathetic divisions

Central Control of the ANS

- Connections for autonomic control
 - Periventricular zone connections to brain stem and spinal cord nuclei
 - · Nucleus of solitary tract
- Function of solitary nucleus
 - · In the medulla
 - Integrates sensory information from internal organs and coordinates output

Biomedical Imaging and Applied Optics Laboratory

13

The Autonomic Nervous System

Neurotransmitters

 ANS: Better understanding of drug mechanisms influencing synaptic transmission (vs. CNS)

Preganglionic Neurotransmitters

- · Primary transmitter: ACh
- ACh: Binds to nAChR, evokes fast EPSP
- Ganglionic ACh: Activates mAChR, slow EPSPs and IPSPs
- Neuroactive peptides: Small EPSPs, last for minutes, modulatory

Postganglionic Neurotransmitters

- Parasympathetic: Release Ach
 - Local effect
- Sympathetic: Release NE
 - · Far-reaching effects

- Adrenal medulla is a modified part of sympathetic nervous system
 - Modified sympathetic ganglion that does not give rise to postganglionic fibers
 - Stimulation of preganglionic fiber prompts secretion of hormones into blood
 - About 20% of hormone release is norepinephrine
 - About 80% of hormone released is epinephrine (adrenaline)
 - Reinforces the activity of the sympathetic response
 - More long-acting and sustained

Biomedical Imaging and Applied Optics Laboratory

15

	Sympathetic		Paraympathetic	
	Action	Receptor	Action	Receptor
General Homeostasis	-stress response (fight or flight) -expends energy		-maintains homeostasis -conserves energy	
Heart				
Cardiac muscle	-↑ rate -↑ contractility	β1 β1	-↓ rate (atria only)-↓ contractility (atria only)	M2 M2
Smooth muscle				
Blood vessels -skeletal m. -skin -penis and clitoris	-dilation -constriction -constriction	β2 α α	-dilation	M
Spleen	-contraction	α		
Bronchi	-dilation	β2	-constriction	М3
G.I. tract -walls -sphincters	-↓ motility -contraction	α2 & β2 α1	-↑ motility -relaxes	M3 M3
Genitourinary tract -bladder wall -sphincter -penis	-relaxation -contraction -ejaculation	β2 α2 α	-contraction -relaxation -erection	M3 M3 M
Glands				
Salivary	-†viscous secretion (small amounts)	α1	-↑ watery secretion	
Sweat -Thermoregulation -Stress	-↑ secretion -↑ secretion	$_{lpha}^{M}$		
Metabolism				
Liver Adipose Kidney	-glycogenolysis -lipolysis -renin release	α, β2 β3 β1		
Eye				
Iris Ciliary muscle	-dilation	α1	-constriction -contraction	M3 M3

Pharmacology of Autonomic Function

- Parasympathomimetic
 - Mimic or promote muscarinic actions of ACh or inhibit actions of NE
- Sympathomimetic
 - Mimic or promote NE actions or inhibit muscarinic actions of ACh

17

Biomedical Imaging and Applied Optics Laboratory

Autonomic Nervous System

Agonists

- Bind to same receptor as neurotransmitter
- Elicit an effect that mimics that of neurotransmitter
- E.g.
 - Salbutamol
 - Activates β₂ receptors
 - · Treatment of asthma
 - Phenylephrine
 - Stimulates both α_1 & α_2 receptors
 - Vasoconstrictor
 - · Used as nasal decongestant
 - Pilocarpine
 - Stimulates muscarinic receptors
 - Useful for both narrow and wide angle glaucoma
 - · Side effects include sweating.

Antagonists

- · Bind with receptor
- Block neurotransmitter's response
- E.g.
 - · Succinylcholine
 - Stimulates the nicotinic receptor
 - Causes prolonged depolarization marked first by muscle fasciculations followed by flaccid paralysis
 - Atenolol
 - Selective β₁ blocker
 - Blockage produces bradycardia and decrease in blood pressure

Biomedical Imaging and Applied Optics Laboratory

19

Anatomy and Functions

- Different structure and function, common principles
 - · Small set of neurons at core
 - · Arise from central core of brain
 - · One neuron influences others
 - Synapses release transmitter molecules into extracellular fluid

The Nonadrenergic Locus Coeruleus

- Path
 - Axons innervate cerebral cortex, thalamus, hypothalamus, olfactory bulb, cerebellum, midbrain, spinal cord
- Function
 - Regulation of attention, arousal, sleep-wake cycles, learning and memory, anxiety and pain, mood, brain metabolism
- Activation
 - New, unexpected, nonpainful sensory stimuli

Norepinephrine system

To spinal cord

The Diffuse Modulatory Systems of the Brain

The Serotonergic Raphe Nuclei

- Path
 - · Spinal cord
 - · Most of brain
- Function
 - · Modulate pain signals
 - · Involved in wake and arousal
 - · Involved in stages of sleep
 - · Control mood and emotion
- Activation
 - Wakefulness

ro opinar core

21

Biomedical Imaging and Applied Optics Laboratory

The Diffuse Modulatory Systems of the Brain

Dopaminergic Cells

- · Substantia Nigra
 - Projects axons to the striatum
 - Facilitates the initiation of voluntary movements
- · Ventral tegmental area
 - Innervates circumscribed region of telecephalon
 - Mesocorticolimbic dopamine system: Dopaminergic projection from midbrain
 - Involved in reward and reinforcement

Dopamine system

The Diffuse Modulatory Systems of the Brain

Cholinergic Systems

- · Basal forebrain complex
 - Core of telencephalon, medial and ventral to basal ganglia
 - Function: Unknown, participates in learning and memory
- Pontomesencephalotegmental complex
 - · Releases ACh
 - Function: Regulates excitability of thalamic sensory relay nuclei

Acetylcholine system

Biomedical Imaging and Applied Optics Laboratory

23

Drugs and the Diffuse Modulatory Systems

- Psychoactive drugs: Act on CNS
- Many drugs of abuse act on modulatory systems
 - Noradrenergic
 - Dopaminergic
 - Serotonergic

Hallucinogens

- LSD discovery: Accidentally by Swiss chemist Albert Hofmann
- LSD chemical structure: Close to serotonin, potent agonist
- Effect: Dreamlike state, mixing of perceptions cortical areas

Stimulants

- Cocaine → DA reuptake
- Amphetamine → DA and NE reuptake and ↑ release of DA
 - Increased energy, euphoria (reward centers)
 - Addiction

Conclusion

- Three Components of the Nervous System That Have Great Reach of Their Influences
 - Secretory hypothalamus (all over the body)
 - Autonomic nervous system (all over the body)
 - Diffuse modulatory systems (all over the brain)
- Detailed level
 - Each system performs different functions
- General level
 - All work to maintain brain homeostasis

25

Biomedical Imaging and Applied Optics Laboratory

Επόμενη Διάλεξη ...

Διάλεξη 16 Κίνητρα Συμπεριφοράς ή Υποκίνηση (Motivation)