

Νευροφυσιολογία και Αισθήσεις

Διάλεξη 16 Κίνητρα Συμπεριφοράς ή Υποκίνηση (Motivation)

Introduction

- Types of behavior
 - · Unconscious reflexes
 - Voluntary Movements
 - Motivation
 - · Driving force on behavior
 - · Analogy- ionic driving force dependent upon many factors
 - Probability and direction of behavior
 - · Vary with the driving force needed to perform the behavior

The Hypothalamus, Homeostasis, And Motivated Behavior

Homeostasis

· Maintains the internal environment of the body within a narrow physiological range

Role of Hypothalamus

Regulates body temperature, fluid balance, and energy balance

Three components of neuronal response

- Humoral response
- · Visceromotor response
- Somatic motor response

Examples of motivated behaviors

- · Response when body is cold
 - Body shivers, blood shunted away from the body surface, urine production inhibited, body fat reserves - mobilized

Lateral hypothalamus

- Initiation of motivation to actively seek or generate warmth→ Homeostasis
- Example of motivated behavior
 - Eating

3

Biomedical Imaging and Applied Optics Laboratory

The Long-term Regulation of Feeding Behavior

Energy Balance

- · Prandial state
- Energy Storage → Glycogen and triglycerides
- Anabolism and Catabolism

Body Fat and Food Consumption

- Hormones and the hypothalamus
 - · Lateral hypothalamus
 - Reduce hormone levels released from fat cells → Incite feeding behavior
 - Detection neurons concentrated in the periventricular zone
- · Lipostatic hypothesis
- Leptin
 - · Regulates body mass
 - Decreases appetite
 - · Increases energy expenditure
- Leptin depletion
 - Incites adaptive responses to fight starvation

) Catabolism during the postabsorptive state

The Long-term Regulation of Feeding Behavior

The Hypothalamus and Feeding

- Anorexia
 - Severely diminished appetite for food
- Obesity
 - Overeating caused by bilateral lesions in ventromedial hypothalamus
- Lateral hypothalamic syndrome
- Ventromedial hypothalamic syndrome

Biomedical Imaging and Applied Optics Laboratory

5

The Long-term Regulation of Feeding Behavior

The Effects of Elevated Leptin Levels on the Hypothalamus

- Arcuate nucleus
 - Located at the base of the third ventricle
- Activation of arcuate neurons that release αMSH and CART peptides
 - Anorectic peptides- diminish appetite
 - Project to regions that orchestrate coordinated response of humoral, visceromotor, and somatic responses
 - Paraventricular nucleus (humoral response)
 - Intermediolateral gray matter of spinal cord
 - · Lateral hypothalamus

The Long-term Regulation of Feeding Behavior

The Effects of Decreased Leptin Levels on the Hypothalamus

- Activation of arcuate neurons that release NPY and AgRP
- Effects on energy balance: Opposite to the effects of αMSH and CART
- Orexigenic peptides

 increase appetite
 - NPY and AgRP inhibit secretion of TSH and ACTH
 - Activate parasympathetic division of ANS
 - Stimulate feeding behavior

The Control of Feeding by Lateral Hypothalamic Peptides

- Lateral hypothalamus: Motivation to eat
 - Electrical stimulation: Triggers feeding behavior in satiated animals
- Neurons intrinsic to lateral hypothalamus; Axons passing through the lateral hypothalamus
- · Innervates most of cortex
 - MCH: Peptide neurotransmitter
 - · Informs cortex about leptin levels
 - · Motivates the search for food

Biomedical Imaging and Applied Optics Laboratory

7

The Long-term Regulation of Feeding Behavior

Summary: The Effects of Elevated/Decreased Leptin Levels on the Hypothalamus

- A rise in leptin levels
 - Increases αMSH and CART in arcuate neurons → inhibit feeding behavior and decrease metabolism
- A fall in leptin levels
 - Increases NPY and AgRP in arcuate and MCH neurons in lateral hypothalamus → stimulates feeding behavior and increases metabolism

The Short-Term Regulation of Feeding Behavior

- · Motivation to eat—depends on
 - · Social factors
 - · Time and quantity of last meal
 - Ghrelin
 - Secreted from the stomach → arcuate nucleus
 - · Causes sense of hunger
- Appetite, Eating, Digestion, and Satiety
 - · 3 phases of eating
 - Cephalic (sight and smell)
 - · Gastric (chew and swallow)
 - Substrate (nutrients begin to be absorbed)
 - Satiety signals
 - · Gastric Distension
 - Vagus nerve → solitary nucleus (also input from taste buds)
 - Cholecystokinin
 - Enteric nervus system → vagus nerve
 - Insulin
 - Vagus → Pancreas → Insuline → acruate nucleus

Biomedical Imaging and Applied Optics Laboratory

9

Why Do We Eat?

- Motivations in psychological terms
 - Liking: Hedonic
 - · Wanting: Drive reduction
- Reinforcement and Reward
 - · Electrical self-stimulation
 - Experiments to identify sites of reinforcement
 - Effective sites for selfstimulation:
 - Trajectory of dopaminergic axons in the ventral tegmental area projecting to the forebrain
 - Drugs that block dopamine receptors
 - · Reduce self-stimulation

Why Do We Eat?

The Role of Dopamine in Motivation

- Old belief
 - Dopamine projection served hedonic reward
- New understanding
 - Dopamine-depleted animals "like" food but "do not want" food
 - Lack motivation to seek food, but enjoy it when available
- Stimulation of the dopamine axons
 - Craving for food without increasing the hedonic impact

Biomedical Imaging and Applied Optics Laboratory

11

Why Do We Eat?

Serotonin, Food, and Mood

- Serotonin as a neurotransmitter
- · Serotonin levels
 - · Low: Postabsorptive period
 - · Rise: In anticipation of food
 - · Spike: During meals

Mood elevation

- Rise in blood tryptophan and brain serotonin
- Elevated also from foods high in tryptophan (e.g. carbs, chocolate)
- Drugs that elevate serotonin levels
 - Example: Dexfenfluramine (Redux)

Disorders

- Anorexia nervosa; Bulimia nervosa
- Both often accompanied by depression

Treatment

- Antidepressant drugs—elevate brain serotonin levels
 - Example: Fluoxetine ("Prozac")

Other Motivated Behaviors

Subfornical organ

Drinking

- Volumetric thirst
 - · Thirst triggered by hypovolemia
 - Hypovolemia
 - · Decrease in blood volume
 - Triggers
 - Decreased flow in kidneys → angiotensin
 - Decreased blood pressure → mechanoreceptors
 - Vasopressin: Antidiuretic hormone or ADH
 - · Acts on kidneys to increase water retention
 - · Inhibit urine production

Biomedical Imaging and Applied Optics Laboratory

13

Other Motivated Behaviors

Drinking

- Osmometric thirst
- **Hypertonicity**
 - Increase in the concentration of dissolved substances in the blood
- OVLT= vascular organ of the lamina terminalis
- Role of OVLT neurons
 - · Excite magnocellular neurosecretory cells
 - Vasopressin
 - · Stimulate osmometric thirst
 - · Drink water when thirsty
- Diabetes insipidus
 - · Lack of vasopressin
 - · Loss of water in urine
 - · Treatment—replace missing vasopressin

Other Motivated Behaviors

Temperature Regulation

- Cells fine-tuned for constant temperature—37°C (98.6°F)
- Neurons for temperature homeostasis
 - · Clustered in anterior hypothalamus
 - Humoral and visceromotor responses
 - Neurons in the medial preoptic area of the hypothalamus
 - Somatic motor (behavioral) responses
 - Neurons of lateral hypothalamic area
- Visceromotor response: Goosebumps
- Involuntary somatic motor response
 - · Shivering, seeking warmth
- Rise in temperature: Metabolism slowed by reducing TSH release

Process during a fall in temperature:

15

Biomedical Imaging and Applied Optics Laboratory

Other Motivated Behaviors

Table 16.2 Hype	othalamic Respons	es to Stimuli 1	That Motivate Behavior	•
BLOODBORNE STIMULUS	SITE OF TRANSDUCTION	HUMORAL RESPONSE	VISCEROMOTOR RESPONSE	SOMATIC MOTOR RESPONSE
Eating signals				
↓ Leptin	Arcuate nucleus	↓ ACTH ↓ TSH	1 Parasympathetic activity	Feeding
↓ Insulin	Arcuate nucleus	↓ ACTH ↓ TSH	† Parasympathetic activity	Feeding
Drinking signals				
↑ Angiotensin II	Subfornical organ	↑ Vasopressin	↑ Sympathetic activity	Drinking
↑ Blood tonicity	OVLT	↑ Vasopressin		Drinking
Thermal signals				
↑ Temperature ↓ Temperature	Medial preoptic area Medial preoptic area	↓ TSH ↑ TSH	↑ Parasympathetic activity ↑ Sympathetic activity	Panting; seeking cold Shivering; seeking warmth

Neuroscience: Exploring the Brain, 3rd Ed, Bear, Connors, and Paradiso Copyright © 2007 Lippincott Williams & Wilkins

· Don't worry, you are not ruled by your hormones

Humans can exert cognitive control

Conclusion

- Overview of motor systems
 - · Addressed "how" questions of behavior
 - E.g., How is movement initiated?
- Overview of motivation systems
 - · Addresses "why" questions of behavior
 - E.g., Why do we drink when dehydrated?
- The important discovery of a neural basis for feeding behavior
 - Allows us to frame new questions that will impact how we view our own behaviors

17

Biomedical Imaging and Applied Optics Laboratory

Επόμενη Διάλεξη ...

Διάλεξη 17 Το Σεξ και ο Εγκέφαλος (Sex and the Brain)