Νευροφυσιολογία και Αισθήσεις

Διάλεξη 18

Οι Συναισθηματικοί Μηχανισμοί στον Εγκέφαλο

(Brain Mechanisms of Emotion)

Introduction

Emotions

 Love, hate, happiness, sadness, fear, anxiety, etc

Significance of Emotions

- Distinguish between Emotional experience and Emotional expression
- Human brain imaging techniques
 - Renaissance in the study of emotion
- Affective neuroscience
 - Neural basis of emotion and mood
- Mood
 - · Emotion extended in time
 - · Covered in chapter 22

What Is Emotion?

Theories of Emotion

- The James-Lange Theory
 - We experience emotion
 - Response to physiological changes in the body
 - We are sad because we cry (we do not cry because we are sad)
- The Cannon-Bard Theory
 - Emotional experience independent of emotional expression
 - Feel emotions even after transection of spinal cord
 - Thalamus—Key role in emotional sensations
- The mechanisms are still not clear

Emotional experience (fear)

Biomedical Imaging and Applied Optics Laboratory

3

What Is Emotion?

Unconscious Emotions

- Sensory input: Emotional impact
 - · Without conscious awareness of stimuli
 - · Rules out theories of emotion
 - Emotional experience not required for emotional expression?
- Many ways to process emotional information

The Limbic System Concept

Broca's Limbic Lobe

- · Group of cortical areas
 - · Forms a ring around brain stem

The Papez Circuit

- Emotional system on the medial wall of the brain
- Links cortex with hypothalamus
- Output to other areas adds "emotional coloring"

• The Papez Circuit Role

- Hippocampus: Emotion
 - · Rabies infection:
 - Evidence of infection; Hyperemotional responses
- Role of anterior thalamus in emotion
 - · Lesions led to emotional disorder
- Limbic system- interconnected structures around the brain stem
 - Together, thought to govern sensation and emotional expression

Biomedical Imaging and Applied Optics Laboratory

Hypothalamus

ANS

Sensory

5

The Limbic System Concept

Emotional expression

Difficulties with the Single Emotion System Concept

- · Diverse emotions experienced
- Structures involved in emotion
 - No one-to-one relationship between structure and function
- Limbic system: Utility of single, discrete emotion system questionable

The Limbic System Concept

• The Klüver-Bucy Syndrome

- Klüver and Bucy
 - Temporal lobectomy in rhesus monkeys
 - Poor visual perception (used mouth)
 - · Increased interest in sex
 - · Decreased fear and aggression
 - Decreased vocalizations and facial expressions
- Temporal lobectomy in humans
 - Exhibit symptoms of Klüver-Bucy syndrome
 - Flattened emotions

Biomedical Imaging and Applied Optics Laboratory

7

The Amygdala and Associated Brain Circuits

- · Anatomy of the Amygdala
 - · Critical in fear and aggression
 - Received a lot of attention and research

The Amygdala and Associated Brain Circuits

• The Amygdala and Fear

- Bilateral amygdalectomy in animals—reduce fear and aggression
- Range of effects of amygdala lesions
 - Deficits in fear, anger, sadness, and disgust
 - · S.M. case study
 - Inability to recognize fear in facial expressions
 - Could recognize people and other emotions
- Electrical stimulation of amygdala
 - Increased vigilance or attention, anxiety and fear
 - Lateral site in cats → fear and violent aggression
- fMRI studies

Biomedical Imaging and Applied Optics Laboratory

The Amygdala and Associated Brain Circuits

The Amygdala and Fear

- Memories of emotional events can be very vivid and long-lasting
- A Neural Circuit for Learned Fear
 - Amygdala (central nucleus) responds to signals associated with fearful memories
 - Subjects also repond better to images with emotional content
 - Synaptic changes in the basolateral nuclei
 - fMRI images and PET imaging: Confirm the role of amygdala in emotion

The Amygdala and Associated Brain Circuits

The Amygdala and Aggression

- Predatory Aggression—Attacks
 - · Against different species for food
 - · Few vocalizations; Attack head or neck
 - No activity in sympathetic division of ANS
- Affective aggression
 - · Used for show, not kill for food
 - · High levels of sympathetic activity
 - Makes vocalizations; Threatening posture
- Surgery to Reduce Human Aggression
 - Amygdalactomy
 - · Psychosurgery last resort
- Symptoms
 - · Reduced aggressive asocial behavior
 - · Increased ability to concentrate
 - · Decreased hyperactivity
 - But also side effects (see Fineas Cage)

Biomedical Imaging and Applied Optics Laboratory

11

Neural Components of Aggression Beyond the Amygdala

The Hypothalamus and Aggression

- Removal of cerebral hemispheres
 - Sham rage
 - · No reason, no attack
 - Behavior reversed by small lesions in hypothalamus
 - Specific lesions, posterior hypothalamus in fear, aggression behaviors
- Electrical stimulation
 - Hess, 1920s
 - Sham rage, imaginary attackers
 - Varying effects with varied intensities
 - Flynn, 1960s
 - Elicited affective and predatory aggressions from different areas of the hypothalamus

Neural Components of Aggression Beyond the Amygdala

The Midbrain and Aggression

- Hypothalamus sends signals to brain stem
 - Lateral Hypothalamus → Medial forebrain bundle → Ventral Tegmental Area
 - Stimulation evokes predatory aggression
 - Medial Hypothalamus → Dorsal longitudinal fasciculus → Periaquaductal Gray → Affective aggression
- Behavior not evoked if midbrain pathways are severed

13

Biomedical Imaging and Applied Optics Laboratory

Serotonin and Aggression

Neurotransmitter Serotonin

- Regulating aggression
 - · Decreased turnover in aggressive animals
- Raphe nuclei of brain stem
- Drug PCPA
 - Blocks serotonin synthesis
 - Increase in aggressive behavior
- Interesting finding in primates
 - Aggression does not correlate with dominance
 - Dominant animal becomes the one with high serotonin turnover
 - Skills to recruit females

Serotonin Receptor Knockout Mice

- 14 serotonin receptor subtypes
- Knockout Mice (recombinant DNA techniques)
- 5-HT_{1A} and 5-HT_{1B}
- High concentrations in raphe nuclei
 - 5-HT_{1A} and 5-HT_{1B} autoreceptors → global regulatory role
- Agonists: Decrease anxiety, aggressiveness

Serotonin system

Conclusion

Neural Pathways

- Involved in the experience, expression of emotion
 - Involves widespread activity in the nervous system

Emotional Reactions

- Result of interactions between sensory stimuli
- · Combination of factors
 - Brain circuitry; Past experiences; Neurotransmitter systems

Biomedical Imaging and Applied Optics Laboratory

15

Επόμενη Διάλεξη ...

Διάλεξη 19 Ψυχασθένειες (Mental Illness)