The Cyprus International Institute for the Environment and Public Health In collaboration with the Harvard School of Public Health

Lecture 2

Sherwood, Human Physiology

Membrane Transport, Membrane Potential and Neural Communication (60-113)

Constantinos Pitris, MD, PhD Assistant Professor, University of Cyprus cpitris@ucy.ac.cy http://www.eng.ucy.ac.cy/cpitris/courses/CIIPhys/

Background Material Membrane Transport

Selective membrane permeability

- Lipid soluble substances (e.g. some vitamins) → high
- Small substances (O₂, CO₂, etc) → high
- Charged, ionic substances → none
- Particles can also cross through substance-specific channels and carriers

Background Material Membrane Transport

Unassisted vs. assisted transport

- Unassisted → permeable molecules can cross the membrane
- Assisted →impermeable molecules must be assisted by other proteins in order to cross the membrane

Energy expenditure

- Passive membrane transport
 - Due to forces that require no energy expenditure
- Can be unassisted or assisted
- Active membrane transport
 - Require energy expenditure from the cell
 - Always assisted

2

Background Material Unassisted Membrane Transport

Unassisted transport due to

- Concentration gradient
- · Electrical gradient

Diffusion down a concentration gradient

- Random motion of molecules
- Net diffusion = net motion in direction of low concentration
- Concentrations tends to equalize → steady state
- E.g. O₂ transferred by diffusion
 Lungs → Low concentration in
 - blood, high in air
 - Tissue → Low concentration in tissue, high in blood

Background Material Unassisted Membrane Transport

Osmosis

- Net diffusion of water (either through membrane or through porins)
- · Water flows to regions of lower water (i.e. higher solute) concentration \rightarrow osmotic pressure
- · Tends to equalize the concentrations

Higher H₂O Lower H₂O concentration. concentration lower solute higher solute concentration concentration = Water molecule

= Solute molecule

Background Material Unassisted Membrane Transport

5

Background Material Unassisted Membrane Transport Pure water from a non- Tonicity of a solution penetrating solute Isotonic Membrane (perm able to H₂C Side 2 Cell volume ~ Hypotonic Lower H₂O cono penetrating solutes · Water moves in the cell s from side 1 to side :

- · Same concentration of nonpenetrating solutes as the cell
- · No water movement by osmosis
- · Lower concentration of non-
- Cell volume ↑
- Hypertonic
 - · Higher concentration of nonpenetrating solutes
 - · Water moves out of the cell
 - Cell volume ↓

Background Material Unassisted Membrane Transport

Diffusion down an electrical gradient

- lons diffuse down electrical gradients \rightarrow to opposite charge
- If electrical gradient exists across a membrane, permeable ions will diffuse passively
- **Combination of concentration** and charge
 - Electrochemical gradient
- · Tend to balance out (we will see this in action later)

Membrane

Background Material Assisted Membrane Transport

- Cells must be able to exchange larger molecules
 - · Glucose, aminoacids, waste, etc.
- Two types of assisted transport
 - Carrier mediated transport
 - May be passive or active
 - Small molecules
 - Vesicular transport
 - Always active
 - Very large molecules. particles

Background Material Assisted Membrane Transport

Carrier mediated transport

- · Carriers are proteins that span the membrane
- · They change their shape to help molecules cross from one side to the other
- · Three categories
- Facilitated diffusion
- Active transport
- · Secondary active transport

10

Background Material Assisted Membrane Transport

Facilitated Diffusion

- No energy expenditure
- Carrier Molecules
 - Move molecules down their concentration gradient
 - · Unloading on the other side · E.g. glucose
 - · High concentration side binding is more likely \rightarrow Net movement in the direction of the concentration gradient
- Diffusion through channels
 - Membrane proteins form channels (water filled pores)
 - Diffusion of specific molecules through specific channels
 - · E.g. Na⁺ or K⁺ channels · Diffusion down their electrochemical
 - gradients (passive)
 - Can be gated (i.e. opened or closed) from external stimuli Electrically gated
 - · Chemically gated

Background Material Assisted Membrane Transport

Active Transport

- · Transport molecules against their concentration gradient
- Energy expenditure
- · A.k.a. "ATPase pumps" or "pumps"
- · On the low concentration side
 - · High affinity sites bind solute
 - Conformation change → flip
 - to the other side
- On high concentration side
- Reduced affinity to the

Examples of active pumps

- H⁺-pump Transports H⁺ into stomach
- Against gradients of x 3-4.10⁶
- Na⁺-K⁺-pump
- All cells, 3xNa⁺ out, 2xK⁺ in
- Very important role!
 - Establish Na⁺ and K⁺ concentration gradients important for nerve and muscle function
 - · Maintain cell volume by controlling solute regulation
 - Co-transport of glucose (see next)

- solute
- Unload the solute and return to previous conformation

13

Background Material Assisted Membrane Transport

Background Material

Secondary Active Transport

- Intestine and kidneys must transport glucose against its concentration gradient
- Cotransport carrier = Glucose + Na⁺
 - Cotransport uses Na⁺ gradient to push along glucose against its concentration gradient
- Na⁺-K⁺-pump maintains Na⁺ concentration gradient (ATP required)
- Energy required for the overall process \rightarrow secondary active transport

Background Material Assisted Membrane Transport

Vesicular Transport

- Endocvtosis
- Exocytosis
 - · Opposite of endocytosis
- Slow process for larger particles (bacteria) or larger quantities (stored hormones)
- Membrane size must be maintained (added or retrieved)
- See table 3-2, p.74

- **Assisted Membrane Transport** Important characteristics of carrier mediated transport Specificity One or a few similar molecules No crossing over Saturation There is a maximum amount of Rate of transport of molecule into cell substance a set of carriers can transport in a given time \rightarrow Transport maximum (Tm) Number of carriers can be
 - upregulated (e.g. insuline $\rightarrow \uparrow$ glucose carriers) Competition
 - If the carrier can transport more that one substance \rightarrow competition between substances

14

Membrane Potential

Opposite charges attract and similar repel

Membrane potential \rightarrow opposite charges across the membrane

- Equal number of + and on each side \rightarrow electrically neutral
- · Charges separated (more + on one side, more – on other) \rightarrow electrical potential
- Measured in V
 - More charge $\rightarrow \uparrow V$
- Note: .
 - · Only a very small number of charges is involved \rightarrow majority of ECF and ICF are still neutral

15

Membrane Potential

- All cells are electrically polarized
- Changes in membrane potential serve as signals (nerve & muscle)
- Resting membrane potential
 - · Potential at steady state
 - Primarily by Na⁺, K⁺, and A⁻ (negatively charged intracellular proteins)
 - Note table 3-3
 - A⁻ found only in cells
 - Na⁺ and K⁺ can diffuse through channels (K⁺>Na⁺)
 - Concentration of Na⁺ and K⁺ maintained by Na⁺-K⁺-pump (most critical role)

	Concentration (millmoles/liter)		Relative	
	Extracellular	Intracellular	Permeability	
Na+	150	15	1	
K+	5	150	50-75	
A.	0	65	0	

Membrane Potential

Resting membrane potential

- Effect of K⁺ alone
 - Assume no potential and only K⁺ and A⁻ present
 - · K⁺ will tend to flow out
 - Net + charge in the ECF, net charge in ICF
 - Potential opposes flow of K⁺
 - Forces balance → no net flow
 - Equilibrium → K⁺ equilibrium potential (calculated from Nerst equation)

$$E = \frac{61}{z} \log \frac{C_o}{C_i} \Longrightarrow E_k = \frac{61}{1} \log \frac{5mM}{150mM} = -90mV$$

 Concentration does not significantly change since infinitesimal changes of K⁺ are enough to set up the potential

17

Membrane Potential

Resting membrane potential

- Effect of Na⁺ alone
 - Assume no potential and only Na⁺ and Cl⁻ present
 - Na⁺ will tend to flow in
 - Net + charge in the ICF, net charge in ECF
 - Potential opposes flow of Na⁺
 - Forces balance \rightarrow no net flow
 - Equilibrium → Na⁺ equilibrium potential (calculated from Nerst equation)

$$E = \frac{61}{z} \log \frac{C_o}{C_i} \Longrightarrow E_k = \frac{61}{1} \log \frac{150mM}{15mM} = +60mV$$

 Concentration does not significantly change since infinitesimal changes of Na⁺ are enough to set up the potential

18

Membrane Potential

Resting membrane potential

- Concurrent effects
- Both K⁺ and Na⁺ present
- The higher the permeability the greater the tendency to drive the membrane potential to its equilibrium value
- Na⁺ neutralizes some of the K⁺ potential but not entirely
 - K⁺ permeability is much higher
- Resting membrane potential = -70mV

Membrane Potential

Balance of passive leaks and active pumping

- At -70 nm both K⁺ and Na⁺ continue to flow
- Na⁺-K⁺-pump maintains the concentrations
- Implication: cells need energy continuously just to maintain their membrane potential

Excitable Tissues

Nerve and muscle are excitable tissue

- · Change their membrane potential to produce electrical signals
- Neurons → messages
- Muscle → contraction

Membrane potential changes

- Polarization
 - When a potential (either + or -) exists across a membrane
- · Depolarization
 - · Reduction of the magnitude of potential (e.g. -70 mV \rightarrow -50 mV)
- Repolarization
 - · Return to resting potential
- Hyperpolarization
 - · Increase in the magnitude of the potential (e.g. -70 mV \rightarrow -90 mV)

÷

-60

-70

-90

- Gated channels
- · Can be open or closed
- (conformation change)
- Types
- Voltage gated
 - · Chemically gated · Mechanically gated
 - · Thermally gated
- **Electrical signals**
 - Graded Potentials
 - Action Potentials

23

Upward deflection = Decrease in potential ard deflection = Increase in potential

-50 Repolarization Hyperpolarization Resting potential -80 Depolarization Time (msec)

22

Graded Potentials

Local changes in membrane potential

- · Confined to a small area, the Active Area
- Remaining cell is still at resting potential (Inactive Area)
- Triggered by specific events
 - · E.g. sensory stimuli, pacemaker potentials, etc
- · Gated channels (usually Na+ open)
- Magnitude and duration proportional to triggering event

Graded Potentials

- Propagate to adjacent areas
 - Movement of ions = current
 - Current spreads in the ECF and ICF (low resistance) but not through the membrane (high resistance)
 - Depolarizes adjacent regions
 - · Graded potentials propagate

Graded Potentials

Graded potentials die out over short distances

- Loss of charge
- Magnitude decreases as it moves away from the point of oriain
- · Completely disappear with a few mm

25

-80

K⁺ equilibrium

potential

Time (msec)

Â,

26

Action Potentials

signal

Changes during an action potential

- · Gradual depolarization to threshold potential (-50 to -55 mV)
 - · If not reached no action potential will occur
- Rapid depolarization (+30 mV) · Portion between 0 and 30 mV is
 - called an overshoot
- · Rapid repolarization leading to hyperpolarization (-80 mV)
- · Resting potential restored (-70 mV)
- Constant duration and amplitude for given cell type ("all-or-none")
- E.g. Nerves → 1 msec

Time (msec)

Action Potentials

APs are a result of changes in ion permeability

- Voltage-gated channels
 - Proteins which change conformation depending on potential
 - Allow passage of ions
 - Voltage-gated Na⁺ channels
 Activation (immediate) and
 - inactivation gates (delayed)
 Voltage-gated K⁺ channels
 - Activation gate (delayed)

Voltage-gated K⁺ channels

Action Potentials

<u>Time</u>	Event	Potential	-00
0 msec	Resting state All channels are closed Graded potential arrives Begins depolarization	- 70 mV	+50 +40 +30 ≤ ≤ ()
2 msec	Threshold reached Activation gates of Na+ channels open Activation gates of K+ channels begin to open slowly Inactivation gates of Na+ channels begin to close slowly	- 50 mV	Caused by K*
2.5 msec	Peak potential reached Inactivation gates of Na+ channels are now closed Activation gates of K+ channels are now open	30 mV	40 - 00 - 10 - 10 - 10 - 10 - 10 - 10 -
3.75 msec	Hyperpolarized state Activation gates of K+ channels close	- 80 mV	-70 -80 - -90 -
5 msec	Resting state Na+-K+-pump restores resting potential Na+ channels are reset to close but active	-70 mV	Time (msec)
	+ 30 (A = 20) = 10) = 10 - 10 10 - 10 - 1	ECF	

29

30

÷

Action Potentials

AP Propagation

- APs initiated at the axon hilloc
 - More voltage-gated channels → lower threshold

Resting potential

- Once initiated the AP travels the entire axon
 - Contiguous conduction
 - Saltatory conduction
- Contiguous conduction
 - Flow of ions → depolarization of adjacent area to threshold
 - As AP is initiated in adjacent area, the original AP is ending with repolarization
 - The AP itself does not travel, it is regenerated at successive locations (like "wave" in a stadium)

32

Action Potentials

Saltatory Propagation

- Some neurons are myelinated
 Covered with myelin (lipid
 - barrier)
 Formed by oligodendrocytes (CNS) and Schwann cells (PNS)
 - No ion movement across myelinated areas
- Nodes of Ranvier
 - Areas between myelin sheaths
 - Ions can flow → APs can form
- Local current can generate AP at the next node
- APs "jump" from node to node
 → information travels 50x
 faster, less work by pumps to
 maintain ion balance
- Loss of myelin can cause serious problems
 - E.g. multiple sclerosis

Action Potentials

Refractory Period

- APs do not travel backwards
 - Local currents do not regenerate an AP in the previously-active-nowinactive area
- Certain time must pass before a second AP can be triggered → refractory period
- · Absolute refractory period
 - During an AP
 - No APs can be triggered
- Relative refractory period
 - Na⁺ channels are mostly inactive
 - K⁺ channels are slow to close
 - After an AP → second AP can be triggered only be exceedingly strong signals
- Refractory period sets an upper limit to the frequency of APs →~2.5 KHz

33

Action Potentials

Characteristics of APs

- How does strength vary?
 - Always the same! → All-or-None Law
 - Does not decrease during propagation
- How are stronger stimuli recognized?
 - Faster generation of APs →
 ↑Frequency
 - More neurons fire simultaneously
- What determines the speed of APs?
 - Myelination
 - Neuron diameter (↑ diameter →↓ Resistance to local current → ↑ Speed)
 - Large myelinated fibers: 120 m/sec (432 km/hr) → urgent information
 - Small unmyelinated fiber: 0.7 m/sec (2.5 km/hr) → slow-acting processes
 - Without myelin the diameter would have to be huge! (50 x larger)

36

34

Synapses and Integration

Synaptic inputs

Myelinated

Aron

(presynaptic axor

A neuron innervates (terminates or supplies) on

· Other neurons, Muscle, Gland

Synapse

- A junction between two neurons
 - Presynaptic neuron
 - Synaptic knob
 - Synaptic vesicles with neurotransmitter (chemical messenger molecule)
 - Synaptic Cleft
 - Postsynaptic neuron
 - Subsynaptic membrane
- Most inputs on the dendrites
- No direct ion flow → Chemical signaling
- One-directional signaling

Timp (modd)

ninals)

Dendrites

Synapses and Integration

Synaptic Signaling

- AP reaches the synaptic knob
- Voltage-gated Ca²⁺ channels open
 Ca²⁺ flows into the synapse from the FCF
- Ca induces exocytosis of vesicles and release of neurotransmitter
- Neurotransmitter diffuses across the synaptic cleft to the subsynaptic membrane and binds to specific receptors
- Binding triggers opening of ion channels
 - Each neuron releases one specific neurotransmitter
 - Many different neurotransmitters
 exist
 - Cause permeability changes of different ions
 - Can be excitatory or inhibitory synapses

S

Synapses and Integration

Neurotransmitters and Receptors

- · Variety of neurotransmitters
- Can bind to variety of receptors
- Each particular synapse releases one specific neurotransmitter (very rarely two)
- Each neurotransmitter-receptor combination produces the same response
 - Glutamate →EPSPs in the brain
 - γ-Aminobutyric Acid (GABA) → IPSPs in the brain
- Neurotransmitters combined with different receptors can produce different responses
 - Norepinephrine → varied responses depending on receptor

Neurotransmitter clearing

- Removal or inactivation to stop the end the signal
 - Inactivation by specific enzymes within the subsynaptic membrane
 - Reuptake back in the axon \rightarrow recycling
- 38

Some Common Neurotransmitters Acetylcholine Histamine Dopamine Glycine Norepinephrine Glutamate Epinephrine Aspartate Serotonin Gamma-aminobutyric acid (GABA)

37

Synapses and Integration

Excitatory Synapses

- Open non-specific cation channels (both Na⁺ and K⁺ can pass through)
- More Na⁺ flows into the cell than K⁺ flows out
 - Both the chemical and electrical gradients favor Na movement
- Net result → Excitatory Postsynaptic Potential (a small depolarization)
- Usually one EPSP is not enough to trigger an AP
- Membrane is now more excitable

Inhibitory Synapses

- Different neurotransmitters
- Open either K⁺ or Cl⁻ channels
- K+ efflux or CI- influx → Inhibitory Postsynaptic Potential (a small hyperpolarization)

Synaptic Delay

- 0.5 to 1 msec
- Travel through more synapses → ↑Total reaction time

40

Synapses and Integration

Grand Postsynaptic Potential (GPSP)

- EPSPs and IPSPs are graded potentials and can be summed
- About 50 EPSPs are required to initiate AP
- Temporal Summation
 - EPSPs occurring very close in time can be summed
 - E.g. repeated firing of presynaptic neuron because of a persistent input
- Spatial Summation
 - EPSPs from different adjacent synapses can be summed
- Concurrent EPSPs and IPSPs
 - Cancel each other (more or less) depending on amplitude and location

Variation in synaptic activity

- Neuromodulation
 - Neuromodulators released by neuron
 - Large molecules which fine-tune a neuron's response
 - Change neurotransmitter production or release
 - Change number of receptors
 - Etc
 - Effect are long term (days, months or years)
- Pre-synaptic inhibition or Presynaptic facilitation
 - Pre-synaptic terminal innervated by modulatory axon terminal
 - Modulatory neuron can inhibit or facilitate the action of a neuron
 Changing amount of Ca²⁺ entering
 - Does not have any effect on the post-synaptic neuron

Synapses and Integration

Post-synaptic Integration

- APs are initiated depending on a combination of inputs
- Neuron is a complex computational device
 - · Synapses = inputs
 - Dendrites = processors
 - Axons/APs = output
- Signaling and frequency of APs is a result of integration of information from different sources
- Information not significant enough is not passed at all
- Neurons are integrated into complex networks (10¹¹ neurons and 10¹⁴ synapses in the brain alone!)
 - Converging
 - Diverging

42

41

Synaptic Plasticity & Learning

Short- and long-term changes in synaptic function

Posttetanic Potentiation

- · Enhancement lasts up to 60 seconds
- Accumulation of Ca2+
- Habituation
 - · The stimulus gradually disappears
 - · Decreased intracellular Ca2+
- Sensitization
 - Habituated response paired once or several times with a noxious stimulus
- Long-Term Potentiation
 - Rapidly developing persistent enhancement of the postsynaptic potential
 - plays a role in memory
- Long-Term Depression
- LTD is the opposite of LTP

Synapses and Integration

Effects of drugs and diseases

- · Drug actions may include
 - Altering the synthesis, axonal transport, storage, or release of a neurotransmitter
 - Modifying the neurotransmitter interaction with the postsynaptic receptor
 - Influence neurotransmitter reuptake or destruction
 - Replace a neurotransmitter with a substitute either more or less powerful
- · Examples
 - Cocaine → blocks reuptake of neurotransmitter dopamine → pleasure pathways remain "on"
 - Tetanus toxin → prevents release of inhibitory neurotransmitter GABA → muscle excitation unchecked → uncontrolled muscle spasms
 - Strychnine → blocks the receptor of inhibitory neurotransmitter glycine → convulsions, muscle spasticity

Sherwood, Human Physiology The Central Nervous System (131-157, 163-166, 168-179)

Excluded: molecular mechanisms of memory, habituation, potentiation, permanent synaptic connections, sleep