Νευροφυσιολογία και Αισθήσεις

Διάλεξη 3 Κυτταρική Μεμβράνη Σε Ηρεμία (Membrane at Rest)

Background Material Membrane Structure

Plasma membrane

 Fluid lipid bilayer embedded with proteins and cholesterol

Phospolipid bilayer

- Phospholipids
 - Polar (charged) hydrophilic head
 - Two nonpolar hydrophobic fatty acid chains
- Assemble in a bilayer which separates two water-based volumes, the ICF and ECF
- Barrier to passage of watersoluble substances
- Not solid! "Fluid mosaic surface"
 → fluidity of membrane

Background Material

Membrane Structure

Other constituents

- Cholesterol stabilizes the membrane
- Small amounts of carbohydrate "sugars" (glycoproteins or glycolipids)
- Proteins are attached or inserted in the membrane
 - Channels
 - · Carrier molecules
 - Receptors
 - Membrane bound enzymes
 - Cell adhesion molecules

Biomedical Imaging and Applied Optics Laboratory

Membrane Structure

Other constituents

- Proteins are attached or inserted in the membrane
 - Highly selective, waterfilled, channels
 - Carrier molecules which transfer specific large molecules across the membrane
 - Docking marker acceptors for binding with secretory vesicles
 - Receptors for recognizing specific molecules
 - Membrane bound enzymes for catalyzing reactions
 - Cell adhesion molecules for adhesion and signaling

Proteins

- Synthesized by ribosomes
- Stucture
 - Primary structure
 - · Chain with peptide bonds
 - Amino acids (20 types)
 - Polypeptides
 - · Secondary structure
 - · Foldings, helices, etc
 - Tertiary structure
 - 3-d foldings
 - · Final form
 - Quaternary structure
 - Combination of two or more proteins

leuroscience: Exploring the Brain, 3rd Ed, Bear, Connors, and Paradiso Copyright © 2007 Lippincott Williams & Wilkins

5

Biomedical Imaging and Applied Optics Laboratory

Membrane Transport

- Selective membrane permeability
 - Lipid soluble substances (e.g. some vitamins) → high
 - Small substances (O₂, CO₂, etc) → high
 - Charged, ionic substances → none
 - Particles can also cross through substance-specific channels and carriers

Membrane Transport

Unassisted vs. assisted transport

- Unassisted → permeable molecules can cross the membrane
- Assisted →impermeable molecules must be assisted by other proteins in order to cross the membrane

Energy expenditure

- Passive membrane transport
 - Due to forces that require no energy expenditure
 - · Can be unassisted or assisted
- Active membrane transport
 - Require energy expenditure from the cell
 - Always assisted

Biomedical Imaging and Applied Optics Laboratory

7

Unassisted Membrane Transport

· Unassisted transport due to

- · Concentration gradient
- Electrical gradient

Diffusion down a concentration gradient

- Random motion of molecules
- Net diffusion = net motion in direction of low concentration
- Concentrations tends to equalize → steady state
- E.g. O₂ transferred by diffusion
 - Lungs → Low concentration in blood, high in air
 - Tissue → Low concentration in tissue, high in blood

Fick's Law of Diffusion

- · Net diffusion rate (Q) depends on
- Concentration gradient (ΔC)
- Permeability of membrane to substance (P)
- Surface area of membrane (A)
- Molecular weight of substance (MW)
- Distance or thickness (ΔX)

$$Q = \frac{\Delta C \cdot P \cdot A}{MW \cdot \Delta X}$$

Biomedical Imaging and Applied Optics Laboratory

Unassisted Membrane Transport

Osmosis

- · Net diffusion of water (either through membrane or through porins)
- Water flows to regions of lower water (i.e. higher solute) concentration → osmotic pressure
- Tends to equalize the concentrations
- Osmosis when a membrane separates
 - · Unequal volumes of a penetrating solute
 - · Unequal volumes of nonpenetrating solute
 - · Pure water from a nonpenetrating solute

Higher H₂O lower solute concentration concentration

Lower H₂O concentration, concentration, higher solute

= Water molecule

= Solute molecule

- Unequal volumes of a penetrating solute
- Unequal volumes of nonpenetrating solute

11

Unassisted Membrane Transport

• Pure water from a non-penetrating solute

Tonicity of a solution

- Isotonic
 - Same concentration of non-penetrating solutes as the cell
 - · No water movement by osmosis
 - · Cell volume ~
- Hypotonic
 - Lower concentration of non-penetrating solutes
 - · Water moves in the cell
 - Cell volume ↑
- Hypertonic
 - Higher concentration of non-penetrating solutes
 - · Water moves out of the cell
 - Cell volume ↓

Biomedical Imaging and Applied Optics Laboratory

13

Unassisted Membrane Transport

Diffusion down an electrical gradient

- lons diffuse down electrical gradients → to opposite charge
- If electrical gradient exists across a membrane, permeable ions will diffuse passively

Combination of concentration and charge

- Electrochemical gradient
- Tend to balance out (we will see this in action later)

- Cells must be able to exchange larger molecules
 - Glucose, aminoacids, waste, etc.
- Two types of assisted transport
 - · Carrier mediated transport
 - · May be passive or active
 - · Small molecules
 - Vesicular transport
 - · Always active
 - Very large molecules, particles

Biomedical Imaging and Applied Optics Laboratory

15

Assisted Membrane Transport

- Carrier mediated transport
 - Carriers are proteins that span the membrane
 - They change their shape to help molecules cross from one side to the other
 - Three categories
 - Facilitated diffusion
 - Active transport
 - · Secondary active transport

Important characteristics of carrier mediated transport

- Specificity
 - · One or a few similar molecules
 - · No crossing over
- Saturation
 - There is a maximum amount of substance a set of carriers can transport in a given time → Transport maximum (Tm)
 - Number of carriers can be upregulated (e.g. insuline → ↑ glucose carriers)
- Competition
 - If the carrier can transport more that one substance → competition between substances

Biomedical Imaging and Applied Optics Laboratory

17

Assisted Membrane Transport

Facilitated Diffusion

- No energy expenditure
- Transport molecules, which can not cross the cell membrane, down their concentration gradient
- Binding triggers conformation change → unloading on the other side
- Carrier can bind on either side of membrane
- High concentration side binding is more likely
- Net movement in the direction of the concentration gradient
- · E.g. glucose

Diffusion through channels

- Membrane proteins form channels → water filled pores through the membrane
- Diffusion of specific molecules through specific channels
 - E.g. Na⁺ or K⁺ channels
- Diffusion down their electrochemical gradients (passive)
- Can be gated (i.e. opened or closed) from external stimuli
 - · Electrically gated
 - · Chemically gated

Biomedical Imaging and Applied Optics Laboratory

19

Assisted Membrane Transport

Active Transport

- Transport molecules against their concentration gradient
- · Energy expenditure
- A.k.a. "ATPase pumps" or "pumps"
- · On the low concentration side
 - Phosphorylation by ATPase (ATP→ADP)
 - · High affinity sites bind solute
 - Conformation change → flip to the other side
- · On high concentration side
 - · Dephosphorylation
 - · Reduced affinity to the solute
 - · Unload the solute
 - Return to previous conformation

Examples of active pumps

H⁺-pump

- Transports H⁺ into stomach
- Against gradients of x 3-4.106

Na⁺-K⁺-pump

- All cells
- 3xNa+ out, 2xK+ in
- Phosphorylation increases affinity to
- Dephosphorylation increases affinity to K+
- Very important role
 - Establish Na⁺ and K⁺ concentration gradients important for nerve and muscle function
 - Maintain cell volume by controlling solute regulation
 - Co-transport of glucose (see next)

Biomedical Imaging and Applied Optics Laboratory

Assisted Membrane Transport

Secondary Active Transport

- Intestine and kidneys must transport glucose against its concentration gradient
- Cotransport carrier = Glucose + Na⁺
 - Cotransport uses Na⁺ gradient to push along glucose against its concentration gradient
- Na⁺-K⁺-pump maintains Na⁺ concentration gradient (ATP required)
- Energy required for the overall process → secondary active transport

Vesicular Transport

- Endocytosis
 - Membrane surrounds the molecules or particle creating a vescicle
 - · Transport inside the cell and
 - · Fusion with lysosome
 - · Transport directly to the opposite site
- Exocytosis
 - · Opposite of endocytosis
 - Fusion of vesicle with membrane and release of contents to the other side
- Slow process for larger particles (bacteria) or larger quantities (stored hormones)
- Membrane size must be maintained (added or retrieved)
- See table 3-2, p.74

23

Biomedical Imaging and Applied Optics Laboratory

Membrane Potential

Opposite charges attract and similar repel

- Energy must be expended to separate opposite charges
- Energy can be harnessed from the field created by opposite charges

Membrane potential → opposite charges across the membrane

- Equal number of + and on each side → electrically neutral
- Charges separated (more + on one side, more – on other) → electrical potential
- · Measured in V

Note:

- Only a very small number of charges is involved → majority of ECF and ICF are still neutral
- More charge → ↑ V

- · All cells are electrically polarized
- Changes in membrane potential serve as signals (nerve & muscle)

Resting membrane potential

- Potential at steady state
- Primarily by Na⁺, K⁺, and A⁻ (negatively charges intracellular proteins)
- Note table 3-3
 - A- found only in cells
 - Na⁺ and K⁺ can diffuse through channels (K⁺>Na⁺)
 - Concentration of Na⁺ and K⁺ maintained by Na⁺-K⁺-pump

ION	Concentration (millmoles/liter)		Relative
	Extracellular	Intracellular	Permeability
Na ⁺	150	15	1
K+	5	150	50-75
A-	0	65	0

25

Biomedical Imaging and Applied Optics Laboratory

Membrane Potential

Resting membrane potential

- Effect of Na⁺-K⁺-pump
 - Pumps 3 Na+ out for every 2 K+ in
 - · Net + charge in ECF
 - · About 20% of membrane potential
 - Most critical role → maintenance of concentrations

Resting membrane potential

- Effect of K⁺ alone
 - Assume no potential and only K⁺ and A⁻ present
 - K⁺ will tend to flow out
 - Net + charge in the ECF, net charge in ICF
 - Potential opposes flow of K⁺
 - Forces balance → no net flow
 - Equilibrium → K⁺ equilibrium potential (calculated from Nerst equation)

• Concentration
$$C_o \Rightarrow E_o = \frac{61}{\text{close}} \log \frac{5mM}{\text{close}} = -90 \text{mV}$$
change since infinitesimal changes of K+ are enough to set up the potential

27

Biomedical Imaging and Applied Optics Laboratory

Membrane Potential

Resting membrane potential

- Effect of Na⁺ alone
 - Assume no potential and only Na⁺ and Cl⁻ present
 - Na⁺ will tend to flow in
 - Net + charge in the ICF, net charge in ECF
 - Potential opposes flow of Na⁺
 - Forces balance → no net flow
 - Equilibrium → Na⁺ equilibrium potential (calculated from Nerst equation)

• Concentration closes not significantly
$$M$$
 = $+60mV$ change since infinitesimal changes of Na⁺ are enough to set up the potential

Resting membrane potential

- · Concurrent effects
- Both K⁺ and Na⁺ present
- The higher the permeability the greater the tendency to drive the membrane potential to its equilibrium value
- Na⁺ neutralizes some of the K⁺ potential but not entirely
 - K⁺ permeability is much higher
- Resting membrane potential
 = -70mV

29

Biomedical Imaging and Applied Optics Laboratory

Δυναμικό Μεμβράνης

Nerst Equation

$$E = \frac{RT}{zF} \ln \frac{C_o}{C_i} = 2.303 \frac{RT}{zF} \log \frac{C_o}{C_i} = \frac{61.54 mV}{z} \log \frac{C_o}{C_i} \quad (T=37^{\circ}C)$$

GHK Equation (Goldman-Hodgkin-Katz)

$$\begin{split} E &= \frac{RT}{F} \ln \frac{\sum P_{C^{+}}[C^{+}]_{o} + \sum P_{A^{-}}[A^{-}]_{i}}{\sum P_{C^{+}}[C^{+}]_{i} + \sum P_{A^{-}}[A^{-}]_{o}} = 2.303 \frac{RT}{F} \log \frac{\sum P_{C^{+}}[C^{+}]_{o} + \sum P_{A^{-}}[A^{-}]_{i}}{\sum P_{C^{+}}[C^{+}]_{i} + \sum P_{A^{-}}[A^{-}]_{o}} \\ E &= 61.54 mV \log \frac{P_{K}[K]_{o} + P_{Na}[Na]_{o}}{P_{K}[K]_{i} + P_{Na}[Na]_{i}} \quad \text{(T=37°C)} \end{split}$$

- R: Gas constant = 8.314472 (Volts Coulomb)/(Kelvin mol)
- F: Faraday constant = 96 485.3383 (Coulomb)/(mol)
- z: Valance
- T: Absolute temperature = 273.16 + °C (Kelvin)

Balance of passive leaks and active pumping

- At -70 nm both K⁺ and Na⁺ continue to flow
- Na⁺-K⁺-pump maintains the concentrations
- Implication: cells need energy continuously just to maintain their membrane potential

Chloride movement at resting membrane potential

- Cl⁻ is the major anion of the ECF
- Flow into the cell is counterbalanced by the membrane potential
- Cl⁻ Resting potential = -70 mV
- Cl⁻ distribution is passively established by the membrane potential

31

Biomedical Imaging and Applied Optics Laboratory

Next Lecture ...

Διάλεξη 4 Δυναμικά Ενεργείας (Action Potentials)