

Νευροφυσιολογία και Αισθήσεις

Διάλεξη 4 Δυναμικά Ενεργείας (Action Potentials)

Excitable Tissues

Nerve and muscle are excitable tissue

- Change their membrane potential to produce electrical signals
- Neurons → messages
- Muscle → contraction

Membrane potential changes

- Polarization
 - When a potential (either + or -) exists across a membrane
- Depolarization
 - Reduction of the magnitude of potential (e.g. -70 mV → -50 mV)
- Repolarization
 - · Return to resting potential
- Hyperpolarization
 - Increase in the magnitude of the potential (e.g. -70 mV → -90 mV)

Excitable Tissues

Changes are triggered by

- · Change of the local electrical field
- Interaction with chemical messenger and surface receptor
- Stimulus (e.g. sound, light, etc)
- Spontaneous change of potential by inherent ion leaks

Changes are caused by movement of ions

- Leak channels
 - · Open all the time
- Gated channels
 - Can be open or closed (conformation change)
 - Types
 - Voltage gated
 - · Chemically gated
 - Mechanically gated
 - Thermally gated

Electrical signals

- Graded Potentials
- Action Potentials

Biomedical Imaging and Applied Optics Laboratory

3

Graded Potentials

Local changes in membrane potential

- Confined to small area, the Active Area
- Remaining cell is still at resting potential, the *Inactive Area*
- · Triggered by specific events
- Gated channels (usually Na+ open)
- Magnitude and duration proportional to triggering event

Graded Potentials

Propagate to adjacent areas

- Movement of ions = current
- Current spreads in the ECF and ICF (low resistance) but not through the membrane (high resistance)
- Depolarizes adjacent regions
- Graded potentials propagate

Biomedical Imaging and Applied Optics Laboratory

Graded Potentials

Graded potentials die out over short distances

- Loss of charge
- Magnitude decreases as it moves away from the point of origin
- Completely disappear with a few mm

Grades potentials are important

- Postsynaptic potentials
- Receptor potentials
- End-plate potentials
- Pacemaker potentials
- Slow-wave potentials

* Numbers refer to the local potential in mV

- Large (~100 mV) changes in the membrane potential
 - · A.k.a spikes
 - Can be initiated by graded potentials
 - Unlike graded potentials action potentials propagate
 - · Transmit information

Changes during an action potential

- Gradual depolarization to threshold potential (-50 to -55 mV)
 - If not reached no action potential will occur
- Rapid depolarization (+30 mV)
 - Portion between 0 and 30 mV is called an overshoot
- Rapid repolarization leading to hyperpolarization (-80 mV)
- Resting potential restored (-70 mV)

• E.g. Nerves → 1 msec

Biomedical Imaging and Applied Optics Laboratory

Action Potentials

AP are a result of changes in ion permeability

- Voltage-gated channels
 - Proteins which change conformation depending on potential
 - · Allow passage of ions
 - Voltage-gated Na⁺ channels
 - Activation (immediate) and inactivation gates (delayed)
 - Voltage-gated K⁺ channels
 - Activation gate (delayed)

Biomedical Imaging and Applied Optics Laboratory

9

Action Potentials

Neuron structure

- Input Zone
 - Dendrites (up to 400 000)
 - · Cell Body
 - Have receptors which receive chemical signals
- Conduction zone
 - Axon or nerve fiber (axon hillock to axon terminals) <1 mm to >1m
- · Output zone
 - · Axon terminal

Input

- Synapse
 - · Graded Potentials
 - Generated in the dendrites as a response to chemical signals
 - Can trigger action potentials in the axon
- Sensory nerve endings

AP Propagation

- APs initiated at the axon hilloc
 - More voltage-gated channels → lower threshold
- Once initiated the AP travels the entire axon
 - · Contiguous conduction
 - · Saltatory conduction

Contiguous conduction

- Flow of ions → depolarization of adjacent area to threshold
- As AP is initiated in adjacent area, the original AP is ending with repolarization
- The AP itself does not travel, it is regenerated at successive locations (like "wave" in a stadium)

11

Biomedical Imaging and Applied Optics Laboratory

Action Potentials

Saltatory Propagation

- · Some neurons are myelinated
 - Covered with myelin (lipid barrier)
 - Formed by oligodendrocytes (CNS) and Schwann cells (PNS)
 - No ion movement across myelinated areas
- · Nodes of Ranvier
 - · Areas between myelin sheaths
 - lons can flow → APs can form
- Local current can generate AP at the next node
- APs "jump" from node to node → information travels 50x faster, less work by pumps to maintain ion balance
- Loss of myelin can cause serious problems
 - · E.g. multiple sclerosis

Refractory Period

- APs do not travel backwards
 - Local currents do not regenerate an AP in the previously-activenow-inactive area
- Certain time must pass before a second AP can be triggered → refractory period
- Absolute refractory period
 - · During an AP
 - · No APs can be triggered
- Relative refractory period
 - · Na+ channels are mostly inactive
 - K⁺ channels are slow to close
 - After an AP → second AP can be triggered only be exceedingly strong signals
- Refractory period sets an upper limit to the frequency of APs →~2.5 KHz

Biomedical Imaging and Applied Optics Laboratory

13

Action Potentials

Characteristics of APs

- How does strength vary?
 - Always the same! → All-or-None Law
 - Does not decrease during propagation
- How are stronger stimuli recognized?
 - Faster generation of APs → ↑Frequency
 - · More neurons fire simultaneously
- What determines the speed of APs?

Myelination

Neuron diameter (↑ diameter → ↓
Resistance to local current → ↑
Speed)

- Large myelinated fibers: 120 m/sec (432 km/hr) → urgent information
- Small unmyelinated fiber: 0.7 m/sec
 (2.5 km/hr) → slow-acting processes
- Without myelin the diameter would have to be huge! (50 x larger)

Neuroscience: Exploring the Brain, 3rd Ed, Bear, Connors, and Paradiso Copyright ⊚ 2007 Lippincott Williams & Wilkins

Regeneration of Nerve Fibers

- Neurons in the PNS can regenerate
 - Distal severed portion degenerates
 - Schwann cells pick up the debris
 - Schwann cells remain and form regeneration tube with nervegrowth-enhancing proteins
 - Nerve grows through that tude

Neurons in the CNS can NOT regenerate

- Oligodendrocytes secrete nervegrowth-inhibiting hormones
- Necessary to keep a complex system such as the CNS stable (during the end of fetal development and later)
- Many strategies to regenerate CNS neurons

Zebra fish axon induced to regenerate http://www.nbb.cornell.edu/neurobio/Fetcho/regeneration.htm

15

Biomedical Imaging and Applied Optics Laboratory

Επόμενη Διάλεξη ...

Διάλεξη 5

Συναπτική Μετάδοση (Synaptic Transmition)