

Νευροφυσιολογία και Αισθήσεις

Διάλεξη 6 Νευροδιαβιβαστές (Nerotransmitters)

Introduction

- Neurons communicate by releasing chemical messengers called neurotransmitters
 - Large number of neurotransmitters are now known and more remain to be discovered
- Neurotransmitters evoke postsynaptic electrical responses by binding to neurotransmitter receptors
 - Members of a diverse group of proteins
- Neurotransmitter three criteria
 - Synthesis and storage in presynaptic neuron
 - Released by presynaptic axon terminal (Ca²⁺ dependent)
 - Produces response in postsynaptic cell
 - Mimics response produced by release of neurotransmitter from the presynaptic neuron

Neuroscience: Exploring the Brain, 3rd Ed, Bear, Connoss, and Paradiso Copyright © 2007 Lippincott Williams & Wilking

Categories of Neurotransmitters

- More than 100 different agents are known to serve as neurotransmitters
 - Large number of transmitters allows for tremendous diversity
- Categories
 - Neuropeptides
 - Relatively large transmitter molecules composed of 3 to 36 amino acids
 - Small-molecule neurotransmiters
 - · Acetylcholine
 - Individual amino acids (e.g. glutamate, glycine, and GABA)
 - Biogenic amines
 - Catecholamines (Dopamine, norepinephrine, epinephrine)
 - · Serotonin, and histamine

Neuroscience: Exploring the Brain, 3rd Ed, Bear, Connors, and Paradiso Copyright © 2007 Lippincott Williams & Wilkins

Biomedical Imaging and Applied Optics Laboratory

3

Acetylcholine

- The first substance identified as a neurotransmitter
- Sites of Action
 - Skeletal muscle junctions
 - Parasympathetic terminals
 - Ganglia of the autonomic nervous system
 - CNS
- Synthesis
 - · In the cytosol
 - Choline transported from ECF
- Removal
 - AChE
 - · Choline reuptake

Acetylcholine

Receptors

- Nicotinic ACh Receptors
 - Ionotropic
 - · Brain, neuromuscular junction
 - Non-selective ion channels → excitatory
 - · Also bind other ligands
 - Nicotine
 - Toxins
 - · Fast response
- Muscarinc ACh Receptors
 - Metabotropic
 - Brain, ganglia, autonomic innervation (parasympathetic)

Biomedical Imaging and Applied Optics Laboratory

5

Acetylcholine

- Organophosphates (including Sarin gas)
 - Inhibit AChE → paralysis
 - · Popular insecticides
- nAChR agonist
 - Nicotine
- nAChR antagonist
 - α-Bugarotoxin
 - Cobra α-neurotoxin
 - Curare
- mAChR agonist
 - Muscarine
- mAChR antagonist
 - Atropine
 - Scopolamine

Glutamate

Sites of Action

• CNS (half of brain synapses!)

Synthesis

- Non-essential amino acid
- · Does not cross BBB
- Synthesized de novo from glutamine
 - · Glial cells

Removal

- Reuptake
 - Excitatory Amino Acid Transporters (EAAT)

Biomedical Imaging and Applied Optics Laboratory

7

Glutamate

Receptors

- Ionotropic
 - · NMDA, AMPA, Kainate
 - Non-selective cation channels → excitatory
 - NMDA Receptor additional features
 - Allows entry of Ca²⁺ too → acts as second messenger
 - Voltage dependent activity
 - At hyperpolarized state → Mg2+ binds and blocks
 - Depolarization removes Mg2+
 - Important in memoryRequires co-agonist glycine
- Metabotropic (mGluR)
 - Indirectly modulate postsynaptic ion channels
 - Can be excitatory or inhibitory
 - · Slow acting

Glutamate

Neuropharmacology

- Agonists
 - Kainate
 - Quissqualate
 - Ibotenic acid, Acromelic Acid (mushrooms)
 - Domoate (algae, mussels)
- Antagonists
 - Funnel and Orb Web Spider venoms
 - · Cone snail venom

Biomedical Imaging and Applied Optics Laboratory

9

GABA

Sites of Action

- Most inhibitory synapses in brain and spinal cord → GABA and Glycine
- 30% of synapses in the CNS are GABA

Synthesis

- Glucose → Glutamate → GABA
- Requires cofactor derived from vitamin B6
 - ↓B6 → ↓ inhibition → seizures
 → infant deaths

Removal

- GABA Transporter (GAT)
- Breakdown by mitochondrial enzymes

GABA

Receptors

- Ionotropic
 - GABA_A, GABA_C
 - Cl-channels
- Metabotropic
 - GABAB
 - Activate of K⁺ channels
 - Block Ca2+ channels

Neuropharmacology

- Agonists
 - Benzodiazepines (Valium, Librium) → sedatives, anxiety reducing
 - Barbiturates → anesthetics
 - Alcohol
 - Steroids
 - Intermediary is γ-hydroxybutyrate →
 "date rape" drug → euphoria, memory
 deficits → unconsciousness
- Antagonists
 - Picrotoxin

Biomedical Imaging and Applied Optics Laboratory

11

Glycine

Sites of Action

- 50% of inhibitory synapses in the spinal cord
- Synthesis
 - From serine
- Removal
 - Glycine Transporter
- Receptors
 - Ionotropic
 - Cl-channels

- Antagonists
 - Strychnine → seizures

Dopamine

Sites of Action

- Brain
 - · Movement and coordination
 - Motivation, reward, reinforcement
- · Sympathetic ganglia
 - · Poorly understood role

Synthesis

From Tyrosine

Removal

- Na+/Dopamine Transporter (DAT)
- Dopamine catabolism enzymes include
 - Mitochondrial Monoamine oxidase (MAO)
 - Cytoplasmic O-methyltransferase (CMOT)

Biomedical Imaging and Applied Optics Laboratory

13

Dopamine

Receptors

- Metabotropic
 - · G-protein coupled
 - Activating or inhibiting adenylyl cyclase
 - · Complex behaviors

- Agonists
 - Hyperactivity, inhibit vomiting, etc
- Antagonists
 - · Induce vomiting, catalepsy
- Illicit drug action
 - Cocaine → block dopamine reuptake→ pleasure pathways remain "on"

Norepinephrine

Sites of Action

- Sympathetic neurons
 - We will discuss later in the course
- Brain
 - Sleep, wakefulness, attention and feeding behavior

Synthesis

· From Dopamine

Removal

- Norepinephrine Transporter (NET)
- Norepinephrine catabolism enzymes include
 - Mitochondrial Monoamine oxidase (MAO)
 - Cytoplasmic O-methyltransferase (CMOT)

Biomedical Imaging and Applied Optics Laboratory

Postsynaptic cell

15

Norepinephrine

Receptors

- Metabotropic
 - α- and β-andrenergic receptors
 - · G-protein coupled
 - 2 x α and 3 x β
 - α1 → slow depolarization (inhibition of K+ channels)
 - α2 → slow hyperpolarization (activation of different K+ channels)

Neuropharmacology

 We will discuss more when we cover the sympathetic system

Epinephrine

Sites of Action

- · Sympathetic nervous system
 - · Adrenal medula
- Brain
 - · Lower quantities
 - · Role not known

Synthesis

· From Epinephrine

Removal

- No specific transporter has been identified yet
- Norepinephrine Transporter (NET) can transfer epinephrine too

Receptors

 Can act on both α- and βandrenergic receptors

Neuropharmacology

 We will discuss more when we cover the sympathetic system

Biomedical Imaging and Applied Optics Laboratory

17

Histamine

Sites of Action

- Hypothalamus
 - · Arousal and attention
 - · Similar to NE and ACh

Synthesis

- · From Histidine
- Transported into vesicles by VMAT
- Degraded by histamine methyltransfarase and MAO

Removal

 No specific transporter has been identified yet

Receptors

- Three metabotrobic receptors
 - · G-protein coupled

- Antihistamines (receptor antagonists) developed for allergies, motion sickness and ulcers
- If the cross BBB → sedative effect (e.g. Benadryl)

Serotonin (5-hydroxytryptamine 5-HT)

(B) Serotonin

Cerebral

Thalamus

Cerebellum

Corpus callosum

Sites of Action

- Pons
 - Sleep and wakefulness
 - Emotions, mental arousal, satiety and decreased food consumption

Synthesis

- From Tryptophan
- Transported into vesicles by VMAT
- Degraded by MAO

Removal

Serotonin transported (SERT)

Receptors

- Many metabotrobic receptors
 - · Implicated in psychiatric disorders
- One type of ionotropic receptor
 - 5-HT₃: non specific cation channel → excitatory

Neuropharmacology

- Selective Serotonin Reuptake Inhibitors (SSRI)

 Antidepressant Prozac

 5 HT antagonists
- 5-HT₃ antagonists
 - Zofran → prevent nausea from chemotherapy

Biomedical Imaging and Applied Optics Laboratory

ATP and Purines

ATP and breakdown products (AMP and adenosine)

- Released and acts as co-transmitters
- Not "classical" neurotransmitters

Sites of Action

- Spinal Cord
- Sensory and autonomic ganglia
- **CNS**

Synthesis

Adenosine from extracellular enzymatic breakup of ATP

Removal

- Enzymatic catabolism
- Nucleoside transporter

Receptors

- Two classes of metabotrobic receptors
 - · G-protein coupled
 - One binds preferentially ATP, the other adenosine
 - One class of ionotropic receptors
 - Non specific cation channel → excitatory
 - · Unclear function except mechanoreception and pain

- Xanthines (caffeine and theophyline) block adenosine receptors
 - Stimulant effects

Peptide Neurotransmitters

- Many peptides known to be hormones also act as neurotransmitters
 - Modulating emotions
 - Perception of pain (substance P and opiades)
 - Complex responses to stress
 - Satiety and obesity (neuropeptide
 - Anxiety and panic attacks (cholecystokinin)
- Often are co-released with smallmolecule neurotransmitters
- Synthesis
 - Like all proteins
 - Because of processing in vesicles many peptides packaged together
- Receptors
 - Virtually all metabotropic (G-protein coupled)

Biomedical Imaging and Applied Optics Laboratory

21

Substance P

- Brain/Gut peptide
 - Hippocampus neocortex, and also in the gastrointestinal tract
- Same gene encodes for a variety of neuroactive peptides
- Sensory neurotransmitter in the spinal cord
 - Conveys information about pain and temperature
 - Its release can be inhibited by opioid peptides

Opioids

- Same postsynaptic receptors activated by opium
- Endogenous Opiates
 - · More than 20 opioid peptides
 - Three classes
 - Endorphins
 - Enkephalins
 - Dynorphins
- Location
 - · Widely distributed throughout the brain
 - Co-localized with other small-molecule neurotransmitters, such as GABA and 5-HT

Actions

- Depressants, analgesics
- Complex behaviors such as sexual attraction and aggressive/submissive behaviors
- Hhave also been implicated in psychiatric disorders such as schizophrenia and autism
- Receptors
 - μ, δ, κ

23

Biomedical Imaging and Applied Optics Laboratory

Unconventional Neurotransmitters

Unconventional

- Not stored and released in the "classical" fashion
- Often associated with retrograde signaling
- Endocannabinoids
- Nitric Oxide

Endocannabinoids

Synthesis

- Unsaturated fatty acid with polar head groups
- Produced by enzymatic degradation of membrane lipids
- Degradation
 - They are hydrolyzed by the enzyme fatty acid hydrolase (FAAH)

Release

 Diffuse through the postsynaptic membrane to reach cannabinoid receptors on other nearby cells

Removal

 Action is terminated by carrier-mediated transport of these signals back into the postsynaptic neuron

Receptors

- CB1 and CB2
- CB1 → CNS (hippocampus, cerebellum)
 - · G-protein coupled
- Inhibit communication between postsynaptic target cells and their presynaptic inputs

Biomedical Imaging and Applied Optics Laboratory

25

Nitric Oxide (NO)

NO is a gas

- · Can permeate the plasma membrane
- Travel through the extracellular medium and act within nearby cells
 - Diffusing a few tens of micrometers
 - · Coordinating the activities of multiple cells in a very localized region
 - Mediating certain forms of synaptic plasticity

Synthesis

- Neuronal synthase is regulated by Ca2+ binding to the Ca2+ sensor protein calmodulin
- NO decays spontaneously by reacting with oxygen
- Actions of NO are mediated within its cellular targets
 - · Regulates a variety of synapses that also employ conventional neurotransmitters
 - · Presynaptic terminals that release glutamate are the best-studied target of NO in the CNS
- NO may also be involved in some neurological diseases

Επόμενη Διάλεξη ...

Διάλεξη 7 Νευροανατομία (Neuroanatomy)

27

Biomedical Imaging and Applied Optics Laboratory