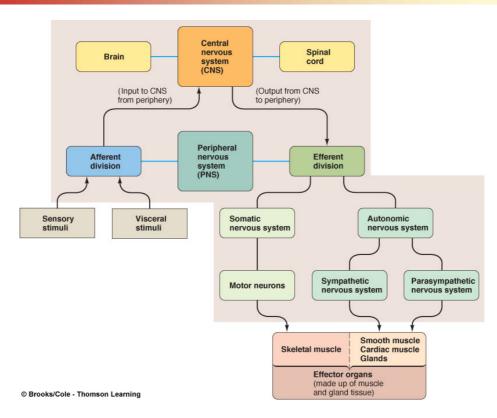


Νευροφυσιολογία και Αισθήσεις

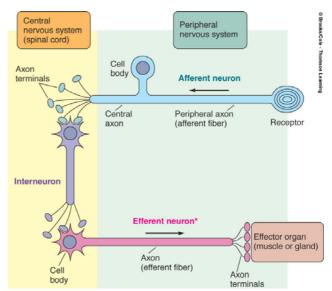

Διάλεξη 7 Νευροανατομία (Neuroanatomy)

(Chapter 7 APPENDIX and Slides)

Organization of the Nervous System

Organization of the Nervous System

Afferent neurons


 Inform CNS about conditions in both the external and internal environment

Efferent neurons

 Carry instructions from CNS to effector organs – muscles and glands

Interneurons

- Found entirely within CNS
- · Responsible for
- Integrating afferent information and formulating an efferent response
- Higher mental functions associated with the "mind"

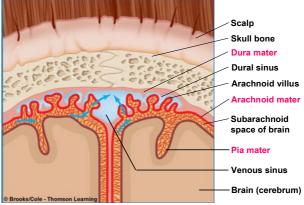
 Efferent autonomic nerve pathways consist of a two-neuron chain between the CNS and the effector organ.

3

Biomedical Imaging and Applied Optics Laboratory

Meninges and the CSF

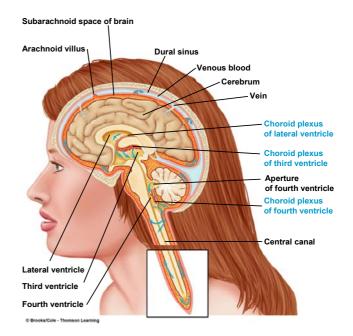



Protection of the CNS

- Hard bony structures (cranium and vertebral column) protect it
- Three membranes (the meninges) protect and nourish it
- The brain floats in the cerebrospinal fluid (CSF)
- The blood-brain barrier (highly selective) limits access to harmful blood born substances

Meningial Membranes

- Dura matter
 - · Two layers mostly attached
 - Dural and Venous sinuses return venous blood and CSF
- Arachnoid matter
 - · Richly vascularized layer
 - Arachnoid villi (CSF reabsorbed into venous circulation here)
- · Pia matter
 - Layer closer to the brain and ependymal cells



Meninges and the CSF

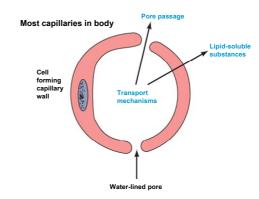
Cerebrospinal Fluid (CSF)

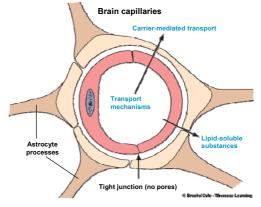
- Characteristics
 - Same density as brain → Brain floats in and is cushioned by the CSF
 - CSF and interstitial fluid of the brain cells are free to exchange materials → CSF composition must be carefully regulated
- Formed by choroid plexuses in the ventricles
 - Richly vascular cauliflower-like masses
 - · Selective and regulated transport
 - Differs from plasma (e.g. lower K⁺ and higher Na⁺)
 - 125-150 ml per day
- Flow
 - Through the ventricles → 4th ventricle →
 Out to subarachnoid space → Over the
 entire brain → Top of the brain →
 Subarachnoid villi → Reabsorbed into
 the dural sinuses
- Pressure
 - 10 mm Hg.
 - Even small reduction (e.g. during spinal tabs) can lead to severe headaches

Biomedical Imaging and Applied Optics Laboratory

5

Meninges and the CSF



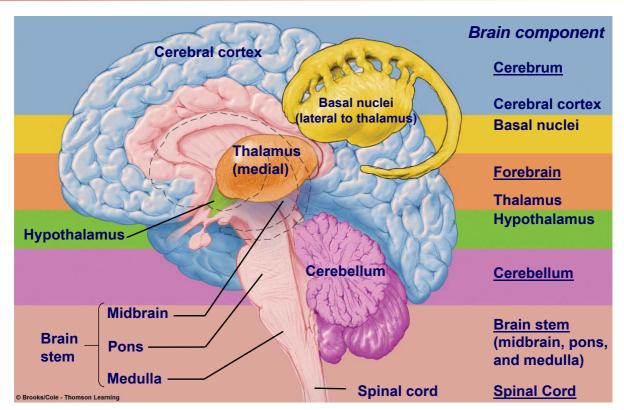

Blood-Brain Barrier (BBB)

- Tight junctions between endothelial cells of brain capillaries (anatomical restriction)
- · Few materials allowed to freely diffuse
 - Lipid soluble substances (O2, CO2, alcohol, steroid hormones
 - Water
- Careful and controlled exchange between blood and CSF for everything else
- Advantage
 - Brain shielded from changes in the ECF and harmful blood borne materials
- Disadvantage
 - · Limited types of drugs can pass through BBB

Brain Nourishment

- Brain can only use glucose and can only metabolize aerobically (O₂ present)
- Highly dependent on blood supply
- Very sensitive to blood supply variations
 - Damage if O2 deprived for > 4-5 mins

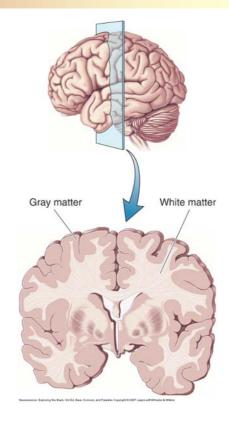
Overview of the CNS


Biomedical Imaging and Applied Optics Laboratory

7

Overview of the CNS

Cerebrum


- · Left and right hemispheres
 - · Gyri and sulci
- Corpus callosum connects left and right

White matter (myelinated axons)

- Inner most layer
- Interconnects

Cerebral cortex or Gray matter (cell bodies)

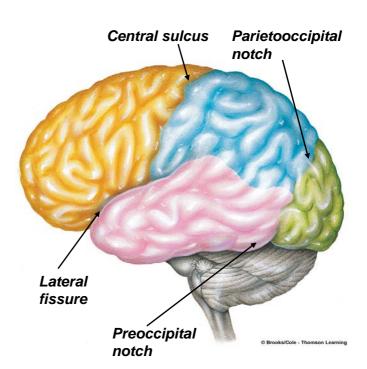
- Outermost layer
- Organized in functional vertical columns (6 layers)
- Each column is a team with distinct function
- Differences are a result of different input/output and different layering patterns
- Divided into four pairs of lobes

Biomedical Imaging and Applied Optics Laboratory

9

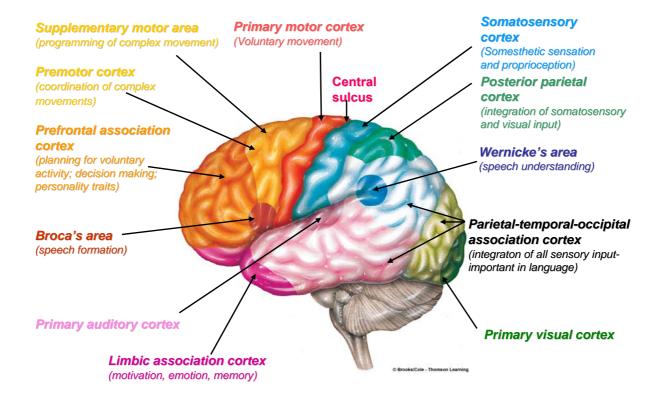
Cerebral Cortex

Cerebral cortex lobes


- Frontal
 - Voluntary motor activity, speaking ability, and elaboration of thought
 - Stimulation of different areas of its primary motor cortex moves different body regions, again primarily on the opposite side of the body.

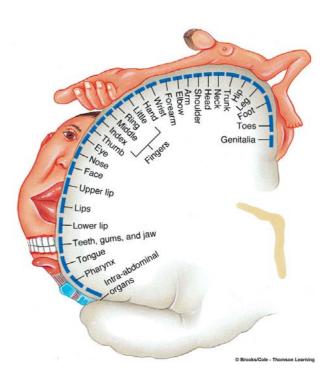
Parietal

- Somatosensory processing
- Each region of its cortex receives somesthetic (feel) and proprioceptive (awareness of body position) input from a specific body area, primarily from the opposite body side.

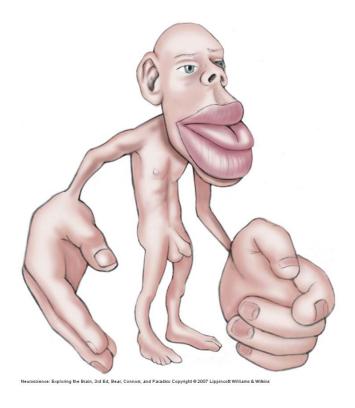

Temporal

- · Receives sound sensation
- Occipital
 - Initial processing of visual input

Biomedical Imaging and Applied Optics Laboratory


11

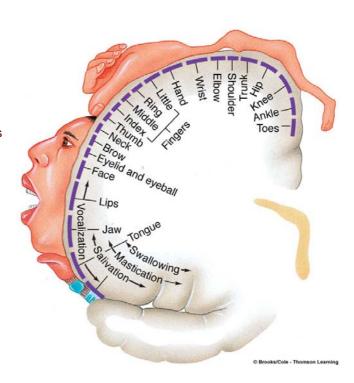
Cerebral Cortex


Parietal Lobe – Primary Somatosensory Cortex

- Somesthetic sensation → sensations from the surface of the body - touch, pain, pressure, heat and cold- and proprioception (awareness of body position)
- Projected to the somatosensory cortex (initial cortical processing and perception)
- Body regions are topographically mapped
 - Different parts of the body are not equally represented
 - · Sensory Homonculus
 - Proportional to precision and sensitivity
- Receives information from the opposite side of the body
 - damage on right side results in sensory loss on left side)

13

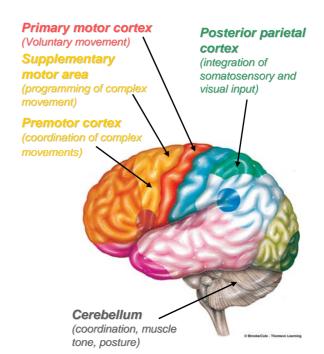
Biomedical Imaging and Applied Optics Laboratory



Cerebral Cortex

Frontal lobe – Primary Motor Cortex

- Voluntary control for muscle movement
- Motor cortex on each side controls muscles on the opposite side of the body
 - Tracts originating in the cortex cross (at level of pyramids) before continuing down spinal cord to terminate muscle
- Body regions are topographically mapped
 - Different parts of the body are not equally represented
 - Motor Homonculus
 - Proportional to precision and complexity of motor skills
- Controls the opposite side of the body
 - Damage on right side results in motor deficit on left side



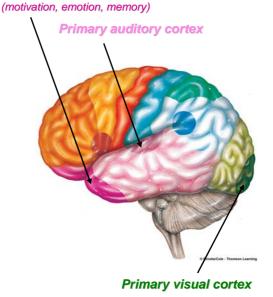
Movement

- The motor cortex itself does not initiate movement
- Premotor cortex
 - · Directs body orientation
 - Must be informed of body's position in relation to target
 - · Acts in response to external cues
- Supplementary motor cortex
 - Plays a preparatory role in programming complex sequences of movement
 - · Responds to internal cues
- Posterior parietal cortex
 - Posterior to the primary somatosensory cortex
 - Informs premotor cortex of position
- Cerebellum
 - Motor coordination
 - · (see more later)

Biomedical Imaging and Applied Optics Laboratory

15

Cerebral Cortex

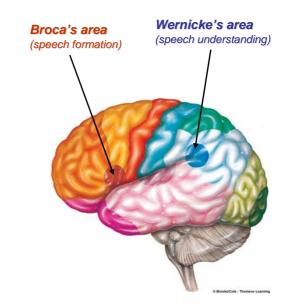

Occipital Lobe

- Primary visual cortex
- Receives input from the eyes via optic nerve and optic projections to occipital lobe
- Important for coordination of eye movements as well

Temporal Lobe

- Contains auditory centers that receive sensory fibers from the cochlea of each ear
- Also involved in the interpretation and association of auditory and visual information
- Temporal lobe contains the hippocampus and the amygdala
- Involved in memory

Limbic association cortex



Language

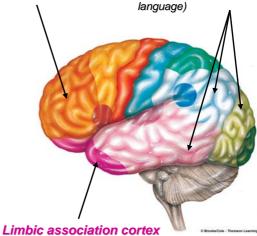
- Areas responsible for language ability are found in only 1 hemisphere (usually the left)
- Language involves the integration of 2 distinct capabilities
 - · Expression (speaking ability)
 - Comprehension (understanding ability)
- · Broca's area
 - · Responsible for speaking ability
 - Frontal lobe in association with the motor area that controls the muscles necessary for articulation
- Wernicke's area
 - Functions for language comprehension
 - Parietal-temporal-occipital association cortex - critical role in understanding both written and spoken language

Biomedical Imaging and Applied Optics Laboratory

17

Cerebral Cortex

Cortical Association areas

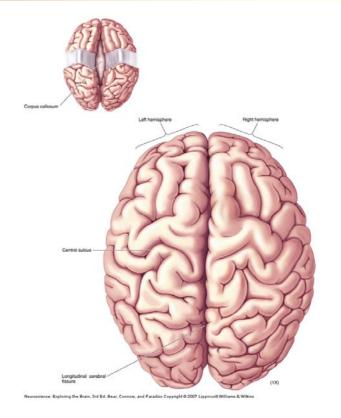

- Prefrontal association cortex
 - Planning for voluntary activity, decision-making, creativity, and developing personality traits.
 - Site of operation of working memory
 - Temporary storage and active manipulation of information used in reasoning and planning
 - · Deficits result in personality changes
- Parietal-temporal-occipital association cortex
 - Integration of somatic, auditory, and visual sensations from the three lobes
 - Involved in connecting Broca's and Wernicke's area
- Limbic association cortex
 - · Motivation, emotion, and memory

Prefrontal association cortex (planning for voluntary

(planning for voluntary activity; decision making; personality traits)

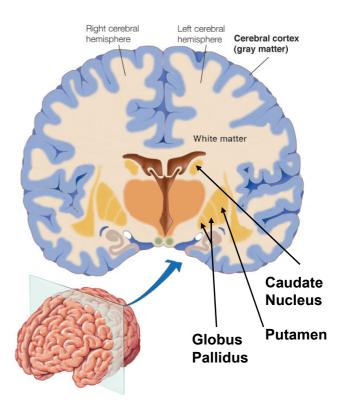
Parietal-temporaloccipital association cortex

(integraton of all sensory input- important in language)



(motivation, emotion, memory)

- Lateralization/dominance of the cerebral hemispheres
 - Each cerebral hemisphere receives information from both sides of the body due to connections via the corpus callosum
 - The left cerebral hemisphere excels in performing logical, analytical, sequential, and verbal tasks
 - Better at describing facial appearances
 - The right cerebral hemisphere excels in spatial perception and artistic and musical talents
 - · Better at recognizing faces

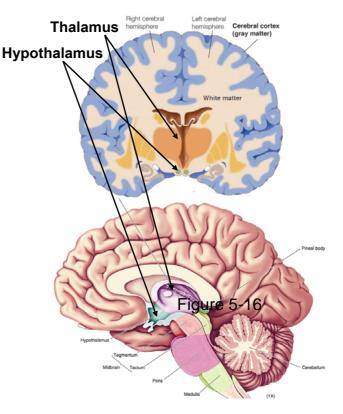

Biomedical Imaging and Applied Optics Laboratory

19

Basal Nuclei

- A.k.a. basal ganglia
- Masses of grey matter deep inside the white matter
- Act by modifying ongoing activity in motor pathways
 - Inhibit muscle tone
 - Proper tone balance of excitatory and inhibitory inputs to motor neurons that innervate skeletal muscle
 - Select and maintain purposeful motor activity while suppressing unwanted patterns of movement
 - Monitor and coordinate slow and sustained contractions
 - Especially those related to posture and support

Diencephalon



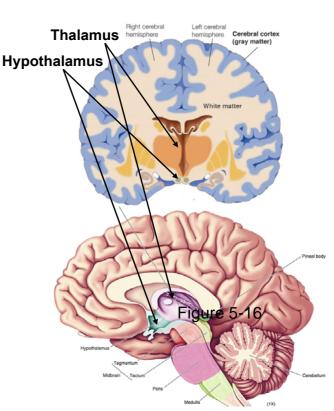
Diencephalon

- Thalamus
- Hypothalamus

• Thalamus

- A relay station
- A synaptic integrating center for processing sensory input on its way to the cerebral cortex.
 - Directs attention (e.g. when a baby cries parents wake up)
- Also integrates information important for motor control
- Receives sensory information from different areas of the body
- Information is processed by specific thalamic nuclei

Biomedical Imaging and Applied Optics Laboratory

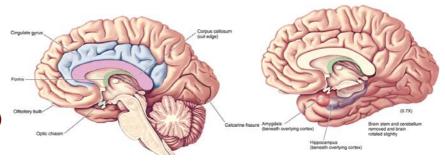

21

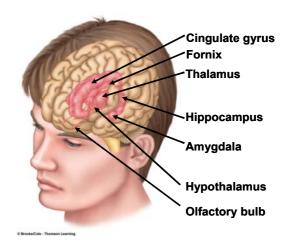
Diencephalon

Hypothalamus

- Homeostatic control
 - body temperature
 - thirst and urine production
 - food intake
 - anterior pituitary hormone secretion
 - production of posterior pituitary hormones
 - uterine contractions and milk ejection
- Serves as an ANS coordinating center
- Plays a role in emotional and behavioral patterns
- · Participates in sleep-wake cycle

Biomedical Imaging and Applied Optics Laboratory


Limbic System



- Several forebrain structures that function together
 - Cortex (limbic association cortex)
 - · Cingulate gyrus
 - Hippocampus
 - Amygdala
 - Basal Nuclei
 - Thalamus
 - Hypothalamus

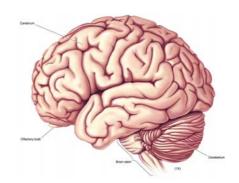
• Plays a role in

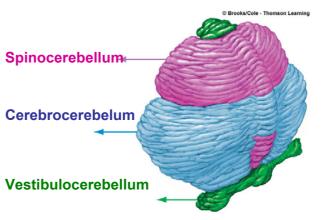
- Emotional state and basic behavioral patterns
- Learning and memory

Biomedical Imaging and Applied Optics Laboratory

23

Cerebellum

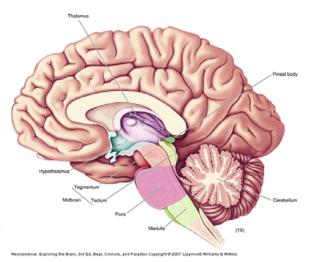

- Highly folded, posterior, part of brain
- Important in
 - Balance
 - Planning and executing voluntary movement


Three parts

- Vestibulocerebellum
 - Maintenance of balance, control of eye movements
- Spinocerebellum
 - Regulation of muscle tone (enhancement, opposite of basal nuclei), coordination of skilled voluntary movement
- Cerebrocerebelum
 - Planning and initiation of voluntary activity

Cerebellar disease

 Intention tremor → present only during voluntary activity

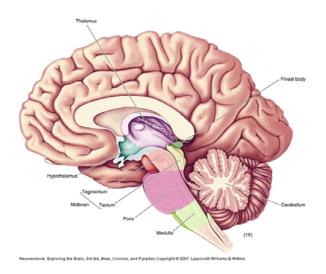

Brain Stem

Critical connecting link between rest of brain and spinal cord

Functions

- Most of cranial nerves arise from brain stem
- Neuronal clusters within brain stem control heart and blood vessel function, respiration, and many digestive functions
- Plays role in regulating muscle reflexes involved in equilibrium and posture
- Reticular formation within brain stem receives and integrates all incoming sensory synaptic input
 - Plays a role in modulating sensitivity of spinal reflexes and regulating transmission of sensory info (esp pain) into ascending pathways
- Centers that govern sleep are in brain stem (evidence suggests center promoting slow-wave sleep lies in hypothalamus)

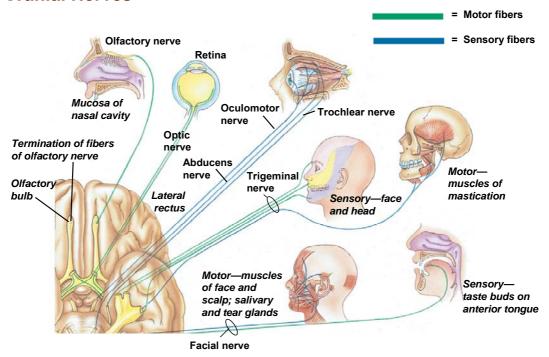
Biomedical Imaging and Applied Optics Laboratory


25

Brain Stem

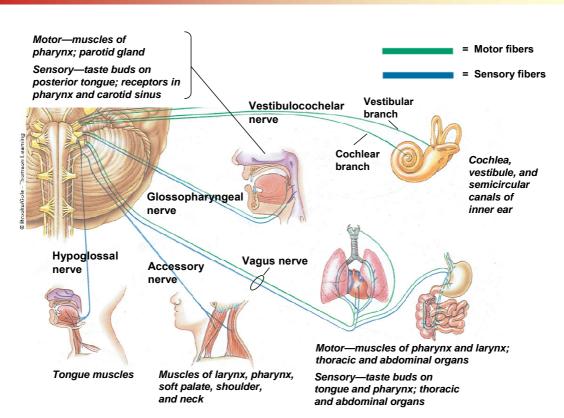
Consists of

- Midbrain
 - · Nerve pathway of cerebral hemispheres
 - · Auditory and Visual reflex centers
 - · Cranial Nerves III, IV
- Pons
 - Respiratory Center
 - Cranial Nerves V-VIII
- Medulla
 - · Crossing of motor tracts
 - Cardiac Center
 - · Respiratory Center
 - Vasomotor (nerves having muscular control of the blood vessel walls) Center
 - Centers for cough, gag, swallow, and vomit
 - Cranial Nerves IX-XII



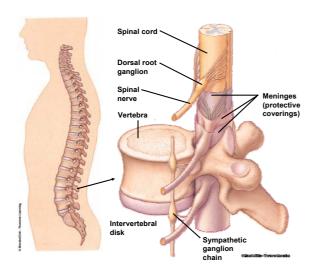
Brain Stem

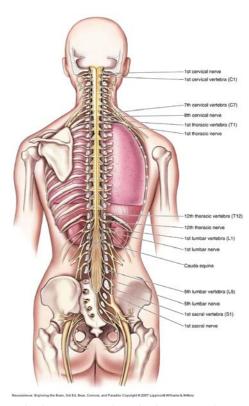
Cranial Nerves


27

Biomedical Imaging and Applied Optics Laboratory

Brain Stem

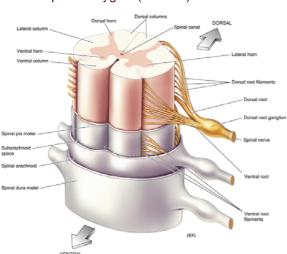


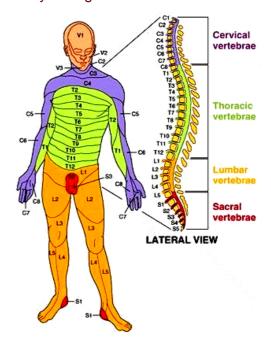


Spinal Cord

- · Extends from brain stem through vertebral canal
 - Below L2 turns into a bundle of nerves
 - Cauda equina
 - · Spinal tabs are taken below this point
- · Two vital functions
 - Neuronal link between brain and PNS
 - Integrating center for spinal reflexes

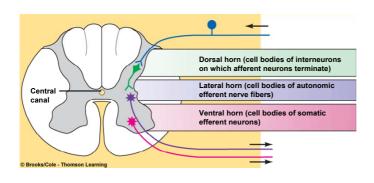
Biomedical Imaging and Applied Optics Laboratory

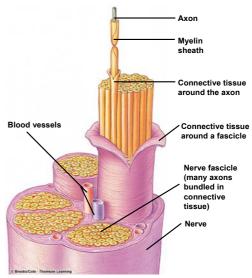



29

Spinal Cord

- 31 pairs of spinal nerves emerge from spinal cord through spaces formed between arches of adjacent vertebrae
 - Named for region of vertebral column from which they emerge
 - 8 pairs cervical (neck) nerves
 - 12 pairs thoracic (chest) nerves
 - 5 pairs lumbar (abdominal) nerves
 - 5 pairs sacral (pelvic) nerves
 - 1 pair coccygeal (tailbone) nerves



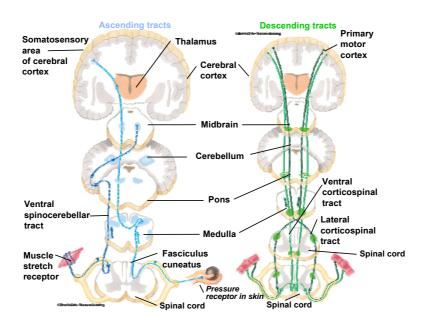

Spinal Cord

• Fairly uniform cross-section

- · Gray matter in the core
 - · Cell bodies
 - Each horn houses different types of neurons
- White matter in the outer segment
 - · Axons organized into bundles
 - · Bundles organized into tracts

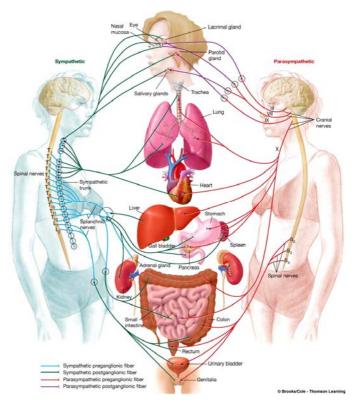
Bi

Biomedical Imaging and Applied Optics Laboratory

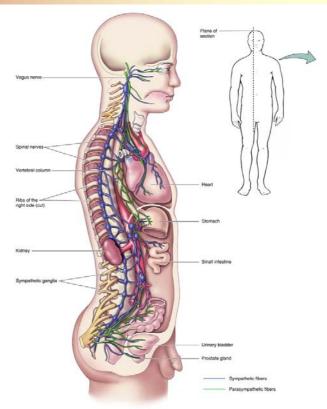

31

Spinal Cord

Bidirectional information

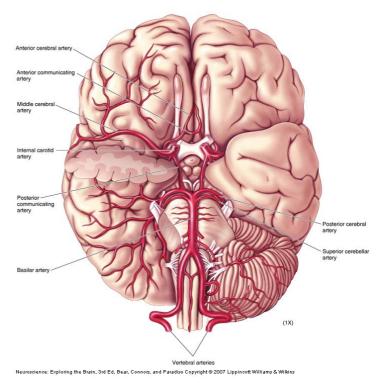

- · Ascending tracts (PNS to brain)
- Descending tracts (brain to PNS)

Autonomic Nervous System


Biomedical Imaging and Applied Optics Laboratory

33

Autonomic Nervous System


Neuroscience: Exploining the Brain, 2rd Ec. Brail. Connect. and Paradisc Copyright © 2007 Upgincet Williams & Williams

Biomedical Imaging and Applied Optics Laboratory

Blood Supply

Biomedical Imaging and Applied Optics Laboratory

35

Επόμενη Διάλεξη ...

Διάλεξη 8 The Eye (Το Μάτι)