

Νευροφυσιολογία και Αισθήσεις

Διάλεξη 8 The Eye (Το Μάτι)

Introduction

- Sensation ≠ Perception
- Perception
 - Our understanding (conscious interpretation) of the physical world
 - An interpretation of the senses
 - Different from what is out there because
 - Our receptors detect limited number of existing energy forms
 - The information does not reach our brain unaltered. Some features are accentuated and some are suppressed
 - The brain interprets the information and often distorts it ("completes the picture" or "feels in the gaps") to extract conclusions.
 - Interpretation is affected by cultural, social and personal experiences stored in our memory

Properties of Light

Light

- Wavelength (distance between two peaks of the electromagnetic wave) → color
- Intensity
- Photoreceptors perceive only a small range → visible light
- Hot colors: Orange, redCool colors: blue, violet

Biomedical Imaging and Applied Optics Laboratory

3

Properties of Light

Optics

- Study of light rays and their interactions
 - Reflection
 - Bouncing of light rays off a surface
 - Absorption
 - Transfer of light energy to a particle or surface
 - · Refraction
 - Bending of light rays from one medium to another

The Eye

- · Sensory organ for vision
- Mechanisms that help protect eyes from injury
 - Eyeball is sheltered by bony socket in which it is positioned
 - Eyelids
 - Act like shutters to protect eye from environmental hazards
 - Eyelashes
 - Trap fine, airborne debris such as dust before it can fall into eve
 - Tears
 - Continuously produced by lacrimal glands
 - Lubricate, cleanse, bactericidal

Biomedical Imaging and Applied Optics Laboratory

The Eye

- Spherical, fluid-filled structure enclosed by three tissue layers
- Sclera/cornea
 - Sclera tough outer layer of connective tissue; forms visible white part of the eye
 - Cornea anterior, transparent outer layer through which light rays pass into interior of eye
- Choroid/ciliary body/iris
 - Choroid middle layer underneath sclera which contains blood vessels that nourish retina
 - Choroid layer is specialized anteriorly to form ciliary body and iris
- Retina
 - · Innermost coat under choroid
 - Consists of outer pigmented layer and inner nervous-tissue layer
 - Rods and cones

The Eye

Ophthalmoscopic Appearance of the Eye

Neuroscience: Exploring the Brain, 3rd Ed. Bear, Connors, and Paradiso Copyright @ 2007 Lippincott Williams & Wilkins

7

Biomedical Imaging and Applied Optics Laboratory

Image Formation by the Eye

- Introduction
 - Eye collects light, focuses on retina, forms images
- Refraction of light by the cornea
 - Major element
- Refraction of light by lens

Refractive power (diopters) =
$$\frac{1}{\text{focal distance (m)}}$$

Image Formation by the Eye

Accommodation by the Lens

- Change in strength and shape of lens
- Accomplished by action of ciliary muscle and suspensory ligaments
- Age-related reduction in accommodation ability presbyopia

plence: Exploring the Brain, 3rd Ed, Bear, Connors, and Paradiso Copyright © 2007 Lippincott Williams & Wilkins

9

Biomedical Imaging and Applied Optics Laboratory

Image Formation by the Eye

- Iris
 - Controls
 - Amount of light entering eye
 - Depth of focus (↓ diam → ↑depth of focus)
 - Contains two sets of smooth muscle networks
 - Circular (or constrictor) muscle
 - · Radial (or dilator) muscle
 - Pigment in iris is responsible for eye color
 - · Unique for each individual
 - Basis for latest identification technology

· Pupillary light reflex

Consensual

Image Formation by the Eye

The Visual Field

 Amount of space viewed by the retina when the eye is fixated straight ahead

Visual Acuity

- Ability to distinguish two nearby points
- Visual Angle: Distances across the retina described in degrees
- 20/20 vision
 - Can recognize a letter 0.083° at 20 ft

Biomedical Imaging and Applied Optics Laboratory

11

Microscopic Anatomy of the Retina

Photoreceptors:

- Cells that convert light energy into neural activity
- · Ganglion Cells:
 - Retinal output (Action Potentials)
- Direct (vertical) pathway:

Other

- · Horizontal cells
- Amacrine cells
- Ganglion cells

Ganglion cell axons projecting to forebrain

Microscopic Anatomy of the Retina

- The Laminar Organization of the Retina
 - Cells organized in layers
 - · Inside-out

Neuroscience: Exploring the Brain, 3rd Ed, Bear, Connors, and Paradiso Copyright © 2007 Lippincott Williams & Wilkins

13

Biomedical Imaging and Applied Optics Laboratory

Microscopic Anatomy of the Retina

- Photoreceptor Structure
 - Electromagnetic radiation to neural signals
 - · Four main regions
 - · Outer segment
 - · Inner segment
 - · Cell body
 - · Synaptic terminal
 - Types of photoreceptors
 - Rods and cones

Microscopic Anatomy of the Retina

Regional Differences in Retinal Structure

- Varies from fovea to retinal periphery
- · Peripheral retina
 - · Higher ratio of rods to cones
 - Higher ratio of photoreceptors to ganglion cells
 - · More sensitive to light

Biomedical Imaging and Applied Optics Laboratory

15

Microscopic Anatomy of the Retina

Regional Differences in Retinal Structure

- Fovea
 - Cross-section of fovea: Pit in retina
 - Structure: Maximizes visual acuity
 - Central fovea: All cones (no rods)

Phototransduction

Phototransduction in Rods

- Depolarization in the dark ("Dark current") / Hyperpolarization in the light
- One pigment in rods: Rhodopsin (Opsin + Retinal)
 - · Receptor protein that is activated by light
- Activation reduces cGMP → closes sodium channels

(b) Light

17

Biomedical Imaging and Applied Optics Laboratory

Phototransduction

Phototransduction in Cones

- Similar to rod phototransduction
- Less sensitivity (need bright light)
- · Different opsins
 - · Red, green, blue

Color detection

- Contributions of blue, green, and red cones to retinal signal
- · Spectral sensitivity
- Young-Helmholtz trichromacy theory of color vision

Phototransduction

Dark and Light Adaptation

- · Dark adaptation—factors
 - · Dilation of pupils
 - · Regeneration of unbleached rhodopsin
 - · Adjustment of functional circuitry
- Light adaptation
 - Opposite changes
- Calcium's Role in Light Adaptation
 - Calcium concentration changes in photorteceptors
 - Na+ channels admit Ca2+ too
 - Ca²⁺ reduces cGMP
 - Indirectly modulates Na⁺ channels
 - When channels are open → Ca flows → less cGMP → channels close
 - When channels are closed → no more
 Ca → more cGMP → channels open

All-cone daytime vision

20-25 minutes

All-rod nighttime vision

19

Biomedical Imaging and Applied Optics Laboratory

Retinal Processing

Transformations in the Outer Plexiform Layer

- Photoreceptors
 - Release neurotransmitter glutamate when depolarized
- · Bipolar Cells
 - OFF bipolar cells
 - · Respond to dark
 - Glutamate cation channel → depolarizing
 - ON bipolar cells
 - · Respond to light
 - Glutamate G-protein coupled → hyperpolarizing (i.e. depolarize in light when there is less glutamate

· Bipolar Cell Receptive Fields

- From one to thousand photoreceptors
- Antagonistic center-surround receptive fields
- Complex interaction of photoreceptors, bipolar and horizontal cells

Retinal Output

Transformations in the Inner Plexiform Layer

- Ganglion Cell Receptive Fields
 - · On-Center and Off-Center cells
 - Responsive to differences in illumination
 - · Emphasize contrast at edges

21

Biomedical Imaging and Applied Optics Laboratory

Retinal Output

Transformations in the Inner Plexiform Layer

- · Types of Ganglion Cells
 - Categories based on appearance, connectivity, and electrophysiological properties
- Three types of ganglion cells in monkey and human retina
 - M-type (Magno) vs. P-type (Parvo)
 - · Larger receptieve fields
 - · Contact APs more rapidly
 - · More sensitive to low contrast
 - · Respond with transient bursts
 - nonM-nonP
 - More on their projections and function next time

Retinal Output

Transformations in the Inner Plexiform Layer

- Color-Opponent Ganglion Cells
 - P-type or nonM-nonP
 - Red/Green or Blue/Yellow

Neuroscience: Exploring the Brain, 3rd Ed, Bear, Connors, and Paradiso Copyright © 2007 Lippincott Williams & Wilkins

23

Biomedical Imaging and Applied Optics Laboratory

Retinal Output

Parallel Processing

- Simultaneous input from two eyes
 - Information from two streams is compared in the central visual system
 - Depth and the distance of object
 - Information about light and dark: ON-center and OFF-center ganglion cells
- Different receptive fields and response properties of retinal ganglion cells: M- and P- cells, and nonM-nonP cells
- Mapping of visual space onto retinal ganglion cells not uniform

Επόμενη Διάλεξη ...

Διάλεξη 9 The Central Visual System (Το Κεντρικό Οπτικό Σύστημα)

25

Biomedical Imaging and Applied Optics Laboratory

Vision

® Brooks/Cole - Thomson Learning

Vision

® Brooks/Cole - Thomson Learning

27

Biomedical Imaging and Applied Optics Laboratory

Vision

