

New technologies and new prospects for the integration of renewable energy in the power system grid

Elias Kyriakides

Associate Director, KIOS Research Center Associate Professor, Department of Electrical and Computer Engineering University of Cyprus elias@ucy.ac.cy

Presentation Outline

- University of Cyprus KIOS Research Center
- The PV2Grid project
- Low voltage grid monitoring and control
- The ENHANCE project
- Other activities

KIOS Research Center - Background

- KIOS Research and Innovation Center of Excellence
- Founded in 2008
- The KIOS Research Center is part of the University of Cyprus
- Housed (mainly) at the KIOS Center Building (600 m²)
- Web site: <u>www.kios.ucy.ac.cy</u>
- TEAMING/H2020 (KIOS/Imperial funding of ~40 m€)
- About 90 researchers (goal to reach 200 by 2020)
 - ➤ 8 faculty members
 - >~30 post-doctoral fellows
 - >~50 Ph.D. students
 - > Several M.Sc. students and non-degree researchers

Technical Focus of the KIOS CoE

- Intelligent monitoring, management and security of complex, large-scale dynamical systems
- Application domain: <u>Critical Infrastructure Systems</u>

Power Systems

- ·Increase stability, fault tolerance
- •Reduce emissions, energy consumption, generation costs
- Integrate renewable energy sources

Water Networks

- Increase security, water quality, resilience
- •Reduce water losses, energy usage, non-revenue water

Telecommunications

- Improve network coverage and mobility, reliability, secrecy, datarates
- Reduce energy consumption

Transportation Networks

- Increase mobility and productivity
- •Reduce accidents, fuel consumption, emissions, congestion cost

Emergency Response

• Reduce damage of ecosystem, damage to property and destruction of critical infrastructures

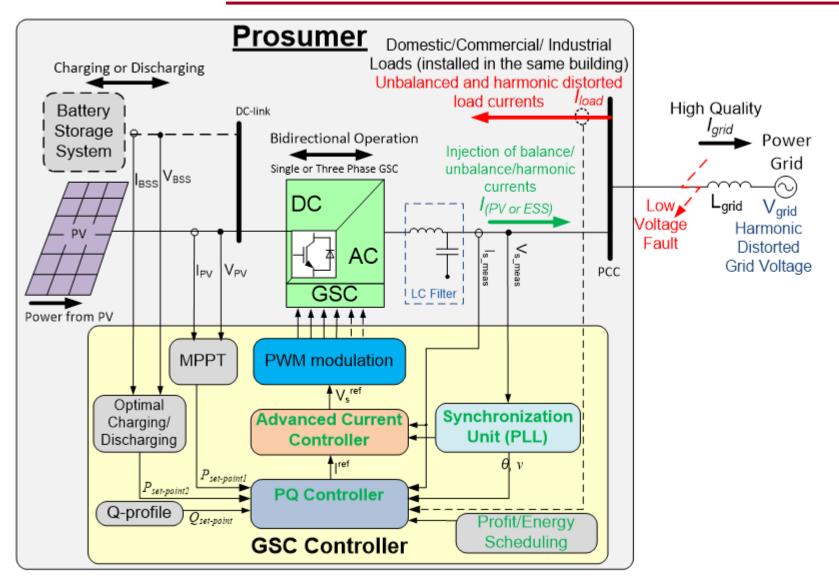
Research Areas of Power Systems Group

- Operation and control of the power system
- Wide area monitoring and control
- Grid integration of renewables
- Control of power electronic converters
- Economic dispatch
- Micro-grids and Smart-grids
- Load shedding
- Load modelling
- Storage

A next generation grid side converter with advanced control and power quality capabilities

- **KIOS Research Center University of Cyprus (Coordinator)**
- > Department of Energy Technology Aalborg University
- > Quantum Energy Corporation Ltd

- ✓ This project aims to advance the technology related to the seamless grid integration of photovoltaic (PV) systems.
- ✓ Development of next generation power electronic Grid Side Converters (GSC) with advanced capabilities and innovative operational management approaches.


The PV2Grid Project – Objectives

- Design and develop new generation Grid Side Converters (GSCs) equipped with advanced control capabilities and novel operational mode approaches:
 - \checkmark providing support to the grid when needed
 - \checkmark enhancing the power system stability
 - \checkmark improving the power quality of the grid
 - ✓ reducing the network losses
- Design new current controllers: inject positive, negative (in case of three-phase GSCs) and harmonic-free currents under normal or abnormal voltage conditions.
- Develop experimental prototypes of GSCs including the current control techniques and the PQ controllers.

Architecture of the Proposed GSC

Development of advanced PQ controllers

Goal: Enable new flexible operation modes for PV inverters

- a. Fault Ride Through (FRT) operation of residential PVs under grid faults
- **b.Operating mode for the PV inverters to symmetrize the prosumer's load unbalances for benefiting the distribution grid operation**

FRT operation of residential PVs

Normal Operation

(P=8 kW, O=0 kVAr)

Normal Voltage

Conditions

0.3

GSC

Grid

Conditions

0.5

05

20

10

0.2

(nd)

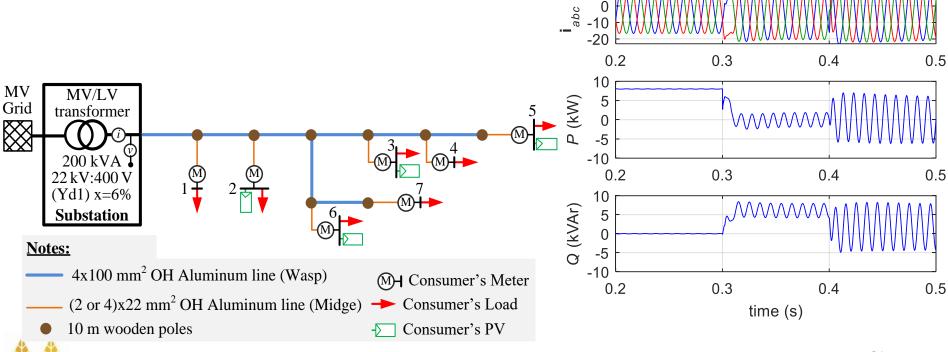
V abc

 $\overline{\mathbf{A}}$

FRT with **positive**

sequence injection

FRT with negative


sequence injection

0.5

Unbalanced Grid Fault (Type F)

0.4

- Provide positive sequence FRT support
- Provide both positive and negative sequence FRT support
- Investigate effect on a realistic LV distribution grid

Effect on a realistic LV distribution grid

- Positive sequence FRT support → voltage rise by 2-3%
- Positive and negative sequence FRT support → voltage rise by 1-2% and asymmetries reduction by 1-2%

Operation of RESs during a grid fault	Voltage at selected busses of the DN					
	MV/LV transformer	Prosumer 2	Prosumer 3	Prosumer 5	Prosumer 6	Consumer 7
(a) RES disconnected	v ⁺ =0.599	v ⁺ =0.589	v ⁺ =0.584	v ⁺ =0.583	v ⁺ =0.585	v ⁺ =0.585
	v ⁻ =0.198	v ⁻ =0.192	v ⁻ =0.190	v ⁻ =0.189	v ⁻ =0.190	v ⁻ =0.190
(b) RES without FRT support	v ⁺ =0.601	v ⁺ =0.593	v ⁺ =0.593	v ⁺ =0.589	v ⁺ =0.594	v ⁺ =0.593
	v ⁻ =0.199	v ⁻ =0.200	v ⁻ =0.198	v ⁻ =0.201	v ⁻ =0.197	v ⁻ =0.197
(c)RES with positive sequence FRT	v ⁺ = 0.611	v ⁺ = 0.608				
	v ⁻ =0.198	v ⁻ =0.192	v ⁻ =0.189	v ⁻ =0.188	v ⁻ =0.189	v ⁻ =0.190
(d)RES with positive and negative sequence FRT	v ⁺ =0.605	v ⁺ =0.598	v ⁺ =0.596	v ⁺ =0.595	v ⁺ =0.598	v ⁺ =0.598
	v ⁻ = 0.192	v ⁻ = 0.182	v ⁻ = 0.176	v ⁻ = 0.174	v ⁻ = 0.178	v ⁻ = 0.179

Industrial project: Monitoring of the LV grid

- There is an urgent need to monitor LV networks. The Electricity Authority of Cyprus has contracted us to develop a monitoring technique for its LV grid.
- System measurements will consist of:
 - > Measurements from the MV/LV transformer
 - Smart meters and AMI
 - > PV and storage inverters
- Different observability levels will be considered, depending on the smart meters penetration level.
- Selected representative low voltage feeders will be studied under various scenarios of:
 - > PV penetration level
 - Seasonal Loading profiles
 - Level of EVs and storage devices
- System modeling:
 - EMT and/or phasor simulations in Matlab-Simulink
 - RTDS KIOS Testbed

Industrial project: Development of control techniques

• The developed control techniques will use all available actuators:

- Online tap changing transformers
- Grid tied inverters
- Storage and EVs
- Flexible loads

• Different control schemes will be investigated:

- Reactive power compensation
- Load shedding or load shifting
- Storage scheduling
- Incentive policies for the PVs
- The developed control techniques will generate the set points of the flexible actuators

Enhanced rooftop PV integration through kinetic storage and wide area monitoring

Project Partners:

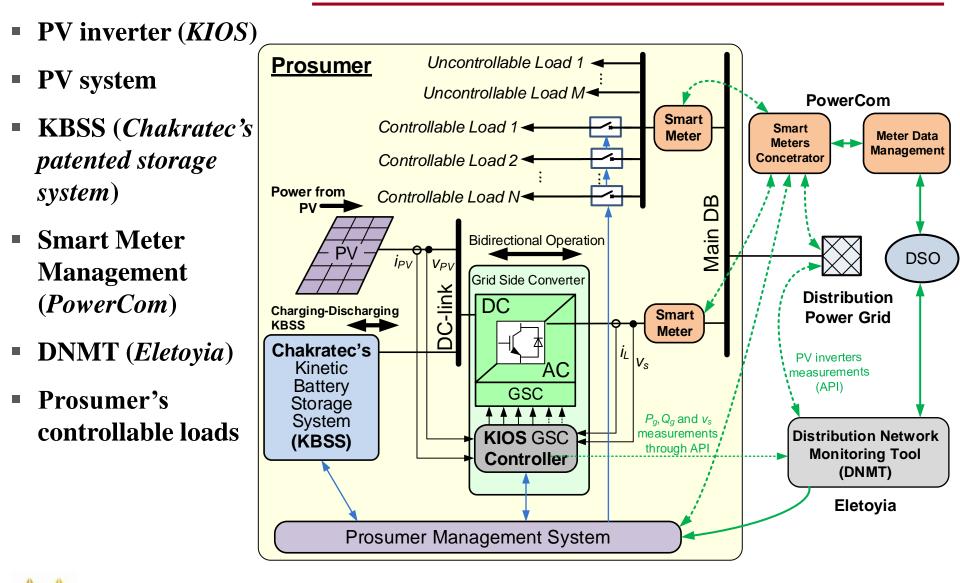
- **KIOS Research Center, University of Cyprus**
- Eletoyia Eletoyia Chakratec **Chakratec Ltd** Unlimited Smart Storage **PowerCom Ltd**

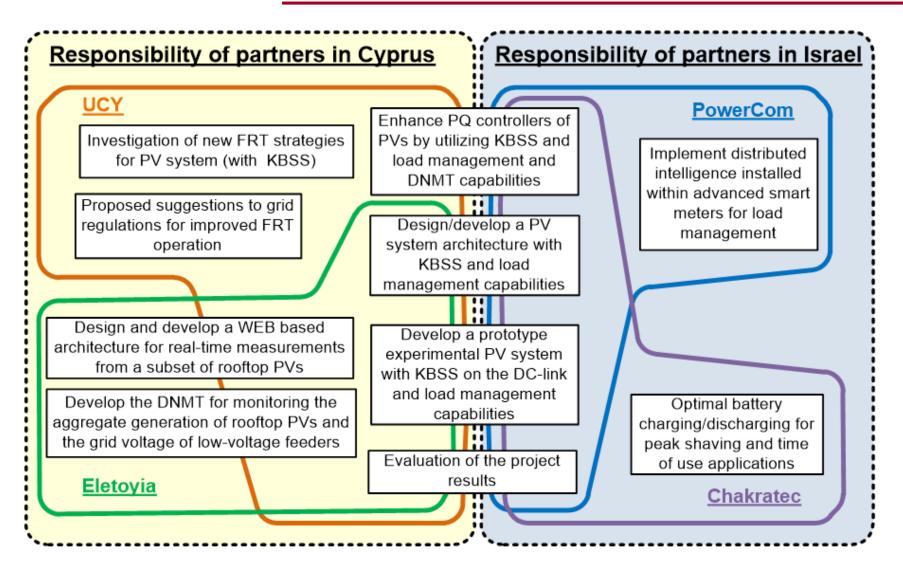
POWERCOM

Funded by:

Research Promotion Foundation of Cyprus (RPF, Cyprus)

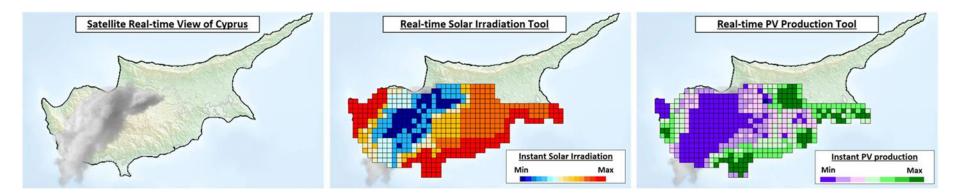
Ministry of National Infrastructures, Energy and Water Resources (Israel)



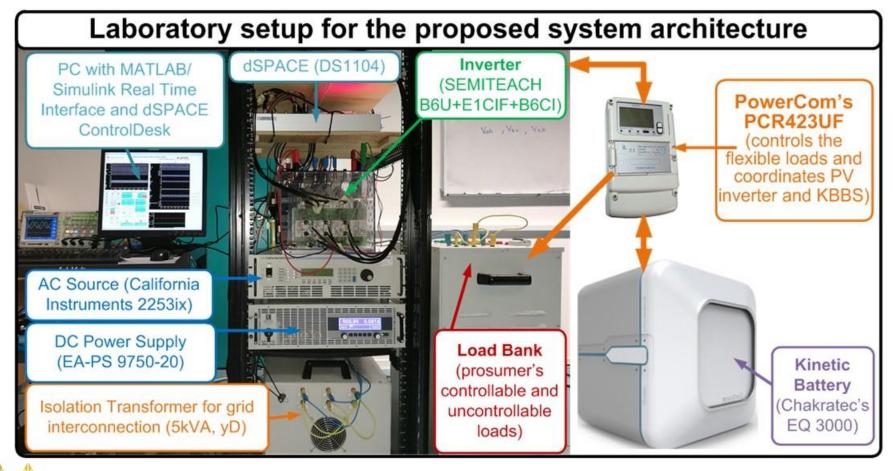


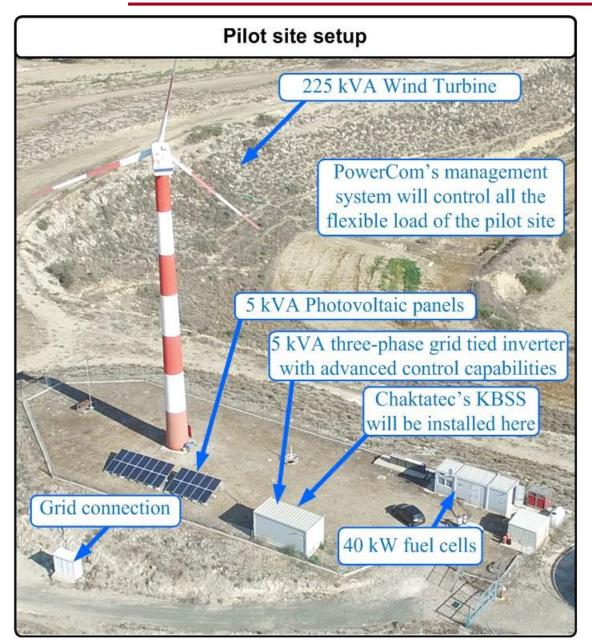
Development of a novel PV system architecture

Project outline


- Seamless and massive integration of residential PV systems
- Enable flexible and multi-functional products
- Improve power system quality and stability
 - ✓ 10% decrease of the peak demand
 - ✓ 20-30% decrease of the prosumer's exchange power
 - ✓ Enable effective grid support of both frequency and voltage by the prosumer
 - ✓ Improved power quality (i.e., voltage and frequency management, congestion management, flexible load shedding, voltage symmetrizing, etc.)
- 5-8% increase of the Kinetic Battery Storage System (KBSS) efficiency
- 7-10 years extension of the inverter lifetime
- Low-cost monitoring of the now-casting PV production of the rooftop PVs
- Awareness of the distribution grid operating conditions
- Efficient and coordinated control of distribution grid

Development of a Distribution Network Monitoring Tool


- Use of location and weather based clustering
- Choice of representative PV site in each group and monitoring
- Upscaling techniques to estimate the aggregate power production of all the PVs in an area and the voltage operating conditions at the low voltage feeder
- Measurements (using the APIs of the inverter) (V, P, Q) will be concentrated every 5-15 min
- Results will be available in an online database


Prototype development and pilot testing

All concepts and methodologies will be tested and validated in both laboratory and grid-connected conditions

Prototype development and pilot testing

FLEXITRANSTORE- EU H2020

- Title: Demonstration of system integration with smart transmission grid and storage technologies with increasing share of renewables
- Budget: 17 million euros (KIOS share: ~1 million euro)
- Main objectives: develop eight large-scale pilots related to substation level storage, smart transmission lines, flexible generation units, energy market
- Consortium: 28 partners -- Universities, manufacturers (Schneider Electric, General Electric, Abengoa, etc), several TSOs and DSOs around Europe

Inverter-less connection of PVs to the grid

- Perform the dc/ac conversion through a set of interconnected electrical machines and a custom-made patented controller => Avoid the use of conventional inverters for the dc/ac conversion (expensive, harmonics).
- Ability to fully control active and reactive power injection.
- Provision of inertia to the grid extremely important for isolated networks.
- Can compensate for the variability of the dc source.

3 - 7 June, 2018

Towards Self-healing, Resilient and Green Electric Power and Energy Systems

Thank you!

Contact: elias@ucy.ac.cy

http://www.kios.ucy.ac.cy

