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Abstract—Cooperative control of multi-UAV systems has at-
tracted substantial research attention due to its significance in
a variety of application sectors, such as emergency response,
search-and-rescue missions, and critical infrastructure inspection.
This paper proposes a distributed control algorithm for gener-
ating collision-free trajectories that drive the multi-UAV system
to completely inspect a set of 3D points on the surface of an
object of interest. The UAVs’ objective is to cooperatively inspect
the object of interest in the minimum amount of time. Extensive
numerical simulations for a team of quadrotor UAVs inspecting
a real 3D structure illustrate the validity and effectiveness of the
proposed approach.

Index Terms—Distributed control, 3D inspection, multi-UAV
systems

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have become increas-
ingly popular in recent years due to their adaptability and wide
range of uses. UAVs equipped with complementary sensor
payloads such as cameras, radars, and navigation systems
(e.g. GPS), allow their usage for various applications, such
as surveillance [1], [2], emergency response missions [3], [4],
security [5], [6], and inspection [7], [8]. The ability of UAVs
to access hard-to-reach or dangerous regions is exploited to
provide a cost-effective and efficient solution for several tasks.

One of the most prevalent applications of automated UAV-
based systems is the inspection/coverage of an object of
interest (e.g. collapsed buildings, critical infrastructures, sen-
sitive facilities), which involves the process of determining the
trajectory of a UAV to fully inspect/cover a specific area effec-
tively. However, inspection/coverage planning for UAVs is a
challenging problem due to balancing multiple objectives such
as inspection quality and completeness, mission duration, and
energy consumption. Inspection/coverage trajectory planning
aims to ensure that each UAV agent provides detailed infor-
mation about the object being inspected using technological
equipment, such as gimballed camera and/or LiDAR while
not violating the UAV’s dynamics and sensing constraints as
well as reducing the risk of collisions.

In the literature, several methodologies are proposed for
solving the 3D inspection/coverage planning problem using
UAVs, however, none of them handle all the aforementioned
objectives and constraints. Consequently, in this work, the
3D inspection planning problem using a multi-UAV system
is investigated for the complete inspection of an object of
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interest. In more detail, the object of interest comprises a
finite number of distinct 3D points on its surface that are to
be cooperatively inspected by multiple quadrotor UAVs. We
assume that each UAV is identical to the other, that is, all
UAVs are governed by the same dynamical model and have
similar sensing capabilities. Accepting the above assumptions,
we propose a 3D inspection planning algorithm for a team
of UAVs, that determines the distributed control inputs of
each UAV, ensuring that the resulting trajectories enable the
complete inspection of the object of interest. The inspection
trajectories are computed in an online fusion by each UAV
using only local measurements and shared information from
its neighbors. The contributions of the paper can be outlined
as follows:

• We propose an online trajectory planning algorithm that
enables the multi-UAV system to fully inspect large-scale
complex structures in the 3D environment.

• We design a distributed control scheme for each UAV
that only uses local measurements, e.g. UAV’s position
and velocity, and neighbors’ position.

The rest of the paper is organized as follows. Section
II presents an overview of the related work on inspec-
tion/coverage path and trajectory planning approaches. In Sec-
tion III, we develop the system model based on our modeling
assumptions, while the problem addressed by this work is
outlined in Section IV. In the sequel, Section V discusses the
details of the proposed 3D inspection approach, and Section
VI evaluates the proposed methodology. Finally, Section VII
concludes the paper and discusses future work.

II. RELATED WORK

In recent years, a plethora of methodologies have been
proposed for solving the well-established problem of inspec-
tion/coverage planning using single-robot or multi-robot sys-
tems. A comprehensive categorization of the various inspec-
tion/coverage planning strategies is presented by the survey
[9], [10]. This section briefly discusses the most significant
approaches that find a solution for the 2D or 3D inspec-
tion/coverage planning problem. The proposed techniques
in the literature are separated into Coverage Path Planning
(CPP) and Coverage Trajectory Planning (CTP) approaches.
The main difference between these two techniques is that
CPP reformulates the aforementioned problem into a more
straightforward path planning problem, neglecting the robot’s
dynamics, and only generates paths that the inspection of
the area of interest (AOI) is guaranteed. On the other hand,



CTP finds the robot’s control input that generates a trajectory
capable of inspecting the AOI.

Initially, the problem of 2D inspection/coverage planning
was primarily conducted with single-robot systems. In par-
ticular, a boustrophedon cellular decomposition of the 2D
collision-free space is proposed in [11], creating a number of
non-intersecting cells. Then, a path-finding problem is solved
by providing the robot’s path that covers all cells with back-
and-forth motions. The authors in [12] develop an algorithm
for inspecting the object’s boundary in a planar environment.
The complete inspection of the object’s boundary is achieved
by selecting and connecting constraint sensing positions. The
work in [13] addresses the coverage of non-overlapping cells
with sweeping motions whereas the authors in [14], investigate
optimal sweeping direction to generate the decomposition of
the environment. Instead of the static decomposition of the
area, the authors in [15], propose an incremental construction
of cell decomposition at the same time as the robot covers the
area of interest.

Furthermore, the use of multi-robot systems appears in
the literature for solving the 2D inspection/coverage plan-
ning problem. In [16], three different multi-robot coverage
approaches are presented where all utilize the boustrophedon
cellular decomposition, while a method for planning the multi-
UAV coverage paths in a polygon region of interest is proposed
in [17] based on an exact cellular decomposition. For a team of
small UAVs, [18] presents a cell decomposition algorithm that
uses regular hexagons for area coverage, and in [19], a time-
based optimal solution is proposed by reformulating the multi-
robot coverage path planning into single-robot problems. The
vast majority of the previously stated 2D inspection/coverage
planning algorithms cannot be expanded to the 3D inspec-
tion/coverage planning problem.

By switching to the more complex 3D environment, the
problem of 3D inspection/coverage planning becomes more
challenging. The authors in [20] extract stationary viewpoints
for an underwater inspection robot that ensures complete
coverage based on both the redundant roadmap and watchman
route algorithms. A traveling salesman problem (TSP) is then
solved to find a feasible path for ship hull inspection. Simi-
larly, in [21], a sampling-based view planning approach using
a UAV is proposed. The 3D inspection/coverage planning
is transformed to a mixed integer quadratic programming
in [22], [23], generating UAV trajectories capable to cover
cuboid-like objects of interest. Our previous work in [24]
proposes a UAV-based receding horizon inspection planning
control methodology that generates an optimal trajectory for
inspecting crucial feature-points on the object’s surface. For
a 3D surface inspection, the authors in [25] propose an
online approach that consists of the optimal control waypoints
extraction process and the generation of the UAV’s continuous
trajectory from these points. The work in [26] presents a
path primitive sampling technique to plan the UAV’s path
for visual inspection of the structure of interest. In sum-
mary, the aforementioned studies provide a solution to the
3D inspection/coverage problem using a single-robot system.

However, these methodologies are improper for handling the
multi-robot 3D inspection/coverage planning problem due to
their system setup. On the contrary, the work in [27] proposes
a cluster-based next-best-view planning method for online
surface reconstruction of complex environments using multiple
UAVs. Furthermore, the authors in [28] solve the problem of
coverage path planning using multiple UAVs for the inspection
of large-scale 3D structures. The aforementioned problem
is reformulated to a set-covering vehicle routing problem,
which is solved by a modified biased random key genetic
algorithm. The works [27], [28] reformulate the problem of
the multi-robot 3D inspection/coverage planning into a more
straightforward CPP, neglecting the robot’s dynamics, and only
generating paths that guarantee the inspection of the area of
interest.

A few recent related works also investigate the multi-
UAV 3D inspection/coverage trajectory planning problem. For
instance, the work in [29] examines the cooperative inspection
problem of a complex 3D structure using a UAV team. Com-
plete coverage is accomplished by the infrastructure’s surface
division and the assignment of the resulting areas to each UAV.
Then the problem is formulated as a multi travelling salesman
problem. In [30] the authors proposed a trajectory planner
for a team of multiple UAVs, based on the particle swarm
optimization approach which finds the optimal trajectories uti-
lizing distributed full coverage and a dynamic fitness function.
Finally, the authors in [31] propose a heat equation driven area
coverage methodology for visual inspection of 3D complex
structures using a multi-UAV system. The algorithm produces
collision-free trajectories and UAVs’ camera orientations.

The primary limitation of the works mentioned above is
the number of robots used to solve that problem. An offline
optimization of the single-robot path does not reduce the
inspection time dramatically compared with the use of a
multi-robot system, which provides faster and more robust 3D
inspection. Centralized or decentralized planners are utilized
to generate the robots’ trajectories, however, in our proposed
method the 3D inspection trajectory is planned in a dis-
tributed manner, that enables the implementation using only
local measurements and information exchanged only between
neighboring agents.

III. SYSTEM MODEL

A. UAV Dynamics

A quadrotor UAV maneuvers inside a bounded and convex
region Q ⊂ R3. Let E = {xE, yE, zE} be the earth-fixed
coordinate frame, which is placed arbitrary in 3D space. On
a quadrotor UAV is attached a body-fixed coordinate frame
B = {xB, yB, zB}, whose origin coincides with the center
of mass of the agent. The nonlinear dynamical model of a
quadrotor UAV, based on [32], can be expressed as:

ṗ = υ (1)

υ̇ = −geE3 +
1

m
RFeB3 (2)

IΩ̇ = −Ω× IΩ+ τ (3)



where the UAV’s position is denoted by p = [x, y, z]T ∈ E,
υ ∈ E is the linear velocity vector, Ω ∈ B represents the
angular velocity, I ∈ R3×3 describes the inertia matrix, and τ
is the total torque applied to the UAV. Furthermore, g is the
gravitational acceleration, m is the UAV’s mass, eE3 = eB3 =
[0, 0, 1]T , the thrust input to the UAV is denoted by F , and
the rotation matrix R ∈ SO(3) is defined as:

R =

 cψcθ −cθsψ sθ
cϕsψ + cψsϕsθ cϕcψ − sϕsψsθ −cθsϕ
sϕsψ − cϕcψsθ cψsϕ + cϕsψsθ cϕcθ

 , (4)

where cα = cosα, sα = sinα, and ϕ, θ, and ψ are the roll,
pitch, and yaw Euler’s angles, respectively.

The complex UAV dynamics can be simplified by adopting
the feedback linearization control technique, which enables the
use of linear controllers. In general, the UAV dynamics can
be hierarchically controlled by two steps, i.e. the position and
attitude control, assuming however, that the attitude dynamics
converges faster than the translational dynamics [33], [34].
Thus, in this work, we design a control scheme only for
translational dynamics (1)-(2). Introducing auxiliary control
inputs, we define the total thrust F , and the desired roll ϕd
and pitch θd as follows

F =
m(uz + g)

cθcϕ
,

ϕd = arctan

(
− uy
uz + g

)
, θd = arctan

(
uxcϕ
uz + g

)
.

(5)

Note that the selection of the rotational matrix R imposes the
yaw angle ψ to be zero, and therefore it is absent from the
translational dynamics. By substituting (5) in (2), we obtain
the reduced translational dynamics as:

ṗ = υ

υ̇ = u
(6)

where u = [ux, uy, uz]
T ∈ R3×1 is the auxiliary control input

vector.

B. Object 3D Representation

The 3D representation of an object of interest W ⊂ Q
requires numerous calibrated images to be gathered during
the 3D reconstruction process [35]. A 3D point-cloud Qc =
{qlc}, l ∈ {1, . . . , |Qc|}, is extracted from these images, with
points qc ∈ Qc being part of the surface area on the object’s
boundary ∂W . Utilizing the Delaunay triangulation method
[36], a triangle mesh K is constructed consisting of triangular
facets κ ∈ K, as depicted in Figure 1. Furthermore, the center
of each triangular facet qκ ∈ Qκ is generated and combined
with the 3D point-cloud set Qc, forming the target set QT =
{Qc ∪Qκ}.

IV. PROBLEM STATEMENT

Consider a group of N quadrotor UAVs, with dynamics
described by (6), being located at an arbitrary area inside the
bounded and convex inspection region Q ⊂ R3. It is assumed

Fig. 1: A 3D point-cloud Qc generation from the object’s
boundary ∂W and its Delaunay triangulation, forming a tri-
angular mesh K.

that each UAV i ∈ V , where V = {1, . . . , N}, is equipped
with a gimballed camera that has the capability to rotate its
field-of-view (FoV) to any direction in Q, capturing important
information of the environment. Let an object of interest, e.g.
a structure, be represented by a surface from which a set of
points QT = {qlT }, l ∈ {1, . . . , |QT |} is extracted, where qlT
is the kth target point on the object’s boundary ∂W , and the
total number of these points is denoted by |QT |. The target
points that need to be inspected are already known to the
UAVs. The 3D inspection problem addressed in this work can
be stated as follows: Find for each quadrotor UAV i ∈ V
a distributed control law, such that, for any initial positions
pi(0) of each UAV i ∈ V , the multi-UAV system cooperatively
inspects all target points QT on the object’s boundary ∂W ,
and all signals remain bounded. The aforementioned problem
can be expressed at a high level, as formed in Problem (P1).
Problem (P1): 3D Inspection Problem

argmin
u1(t),...,uN (t)

H, t ≥ 0 (7a)

subject to:
ṗi(t) = υi(t), υ̇i(t) = ui(t) ∀i ∈ V,∀t ≥ 0 (7b)
pi(t) ∈ Q−W ∀i ∈ V,∀t ≥ 0 (7c)
pi(t) ̸= pj(t) ∀i, j ∈ V,∀t ≥ 0 (7d)

The objective is to design, for each UAV i ∈ V , a control input
ui(t) that the trajectories of the multi-UAV system drive the
inspection cost function H to the minimizer, subject to the
constraints in (7b)-(7d). The constraint in (7b) corresponds to
the UAVs’ dynamics introduced in (6) while the constraint
(7c) ensures that the position of any UAV i ∈ V for ∀ t ≥ 0,
belongs to the inspection region Q avoiding collision with
the object of interest W . Finally, the inter-agent collision
avoidance is represented by the constraint in (7d).

V. PROPOSED APPROACH

A. Cost Function

Consider a multi-UAV system consisting of N quadrotor
UAVs. Let Q ⊂ R3 be a convex region in which the UAVs
move and the position of the ith UAV is denoted by pi. The set



of all UAVs’ positions is also defined as P = {p1, . . . ,pN}.
The sensing quality at the point q ∈ Q measured by the ith

UAV located at pi decreases proportionally with the distance
∥q − pi∥. This measure can be expressed by an isotropic,
strictly increasing, and convex function f(∥q− pi∥) : R+ →
R+, called sensing unreliability function, that as reaches
large values, the sensing quality deteriorates. The function
φ : Q → R+ is a density function over Q that allocates
weight to each point q ∈ Q in the region, signifying the
relative importance of various regions in Q. As a result, the
multi-UAV team focuses on areas with high values of φ(q).
Given the set P , the optimal partition of Q can be obtained by
constructing the set of Voronoi regions, V = {V1, V2, ..., VN},
where the UAVs positions are the generating points, as:

Vi = {q ∈ Q : ∥q− pi∥ ≤ ∥q− pj∥, ∀ j ̸= i}. (8)

If the Voronoi regions Vi and Vj are adjacent, that is, it holds
true that Vi∩Vj ̸= 0, then the ith and jth are called neighbors.
The neighborhood of the ith UAV is denoted by Ni comprising
all the UAV neighbors.

The inspection cost function is thereafter defined as an
indicator of multi-UAV system performance as follows:

H(P) =

N∑
i=1

∫
Vi

f(∥q− pi∥)φ(q)dq. (9)

The function H measures how ineffectively the UAVs are
positioned inside Q based on its importance regions, and
therefore the multi-UAV system aims to minimize it. One
way to find the minimizer of H is to compute its gradient
concerning the UAVs’ positions pi, which is given by, [37]:

∂H
∂pi

=

∫
Vi

∂f(∥q− pi∥)
∂pi

φ(q)dq =MVi
(pi −CVi

) (10)

where we utilize the quadratic sensing unreliability function as
f(∥q− pi)∥) = 1

2∥q− pi∥2, and the mass MVi
and centroid

CVi
of the Voronoi region Vi are respectively expressed as:

MVi =

∫
Vi

φ(q)dq, CVi =
1

MVi

∫
Vi

qφ(q)dq. (11)

It is obvious that the partial derivative with respect to the ith

UAV position is determined only by its own position and the
positions of its Voronoi neighbors. The equilibrium points of
H can be found when ∂H/∂pi = 0, that is, pi = CVi for all
i ∈ V . Therefore, the multi-UAV system achieves Centroidal
Voronoi Tessellation (CVT) by each UAV being positioned at
the centroid of its Voronoi region.

B. 3D Target Points Inspection

As mentioned before, the goal of the multi-UAV system
is to inspect a set of target points QT on the surface of the
object’s boundary ∂W . We propose the outward projection of
these points Q̄T = {q̄lT }, l ∈ {1, . . . , |Q̄T |}, as shown in
Figure 2, as a method of driving each UAV i ∈ V to positions
around the projected points that are capable of inspecting
the corresponding target points on the object’s surface. More
specifically, at each projected target point q̄lT , we attach a

Fig. 2: 3D Projected Target points

3D Gaussian function φl(q, q̄lT ) centered at q̄lT , and thus the
density function φ(q) can be defined as follows:

φ(q) =

|Q̄T |∑
l=1

blφl(q, q̄
l
T ) =

|Q̄T |∑
l=1

blαe
−β∥q−q̄l

T ∥2

, (12)

where α, β > 0, |Q̄T | is the total number of the projected
target points, and bk is a binary variable that represents the
target inspection status of qlT . It is required that all target
points are known to the UAVs and a set Bi = {bl}, ∀ l ∈
{1, . . . , |QT |} is stored by the UAV i ∈ V and shared to each
neighbor j ∈ Ni. A target point qlT is considered as inspected
from the multi-UAV system if the following condition holds:

f(∥q̄lT − pi∥) =
1

2
∥q̄lT − pi∥2 ≤ r i ∈ V. (13)

The inequality in Eqn. (13) can be interpreted as follows. If
a UAV i ∈ V is positioned within a radius r ∈ R+ from
the projected target point q̄lT , then it is assumed to acquire
significant information about the target point qlT , by rotating
its camera’s FoV to that direction. Therefore, the UAV i ∈ V
has inspected qlT , and sets Bi,l = bl = 0. The updated target
inspection status set Bi is shared with the UAV’s neighbors
and the density function is computed again. This procedure is
repeated until all target points are inspected from the multi-
UAV system (see Algorithm 1).

C. Object Avoidance

During the mission of the multi-UAV system, each UAV
i ∈ V moves towards the centroid CVi of its Voronoi region
Vi. However, this movement generates a trajectory that may
cause a collision between the UAV and the object of interest.
Consequently, an object avoidance technique is adopted to
maintain the UAVs’ positions pi ∈ Q − W . As mentioned
above, the object of interest is represented by a set of target
points QT which all UAVs should avoid due to disastrous
consequences. As a result, a repulsive function is utilized as:

Uo,i =


|QT |∑
k=1

1
2ϵ

(
1

∥pi−ql
T ∥ − 1

do

)2

, if ∥pi − qlT ∥ ≤ do

0 , otherwise
(14)



where ϵ, do > 0 are a positive gain and the safety distance,
that is, the minimum allowable distance of the UAV i ∈ V
from each target point qlT , respectively.

D. Distributed Control Design

In this section, a distributed inspection control law is
designed for each UAV i ∈ V , governed by (6), that drives
the multi-UAV system to inspect an object of interest. The
following standard assumptions are made for achieving this
goal.

Assumption 1: Each quadrotor UAV is capable to compute
its own Voronoi region in a distributed way.

Assumption 2: Each quadrotor UAV has the ability to com-
municate with its Voronoi neighbors and share information.

A distributed control law, based on the Centroidal Voronoi
Configuration (CVC), uc,i is developed such that each UAV
i ∈ V moves to its centroid CVi

. Therefore, the following
position controller for the ith UAV is given by:

uc,i = kpMVi
CVi

− (kpMVi
pi + kdυi) (15)

where kp, kd > 0 are the proportional and derivative control
gains, respectively.

Proposition 1: Consider a group of N quadrotor UAVs, with
dynamics governed according to (6). If Assumptions 1 and 2
hold, and the control scheme (15) is employed for each UAV
i ∈ V , then it is guaranteed that the multi-UAV system is
asymptotically stable, and the UAVs move towards the CVC
until the object of interest is totally inspected.

Proof. We define a candidate Lyapunov function as

Υ = kpH+

N∑
i=1

1

2
υTi υi (16)

Taking the time derivative of Υ along the system trajectories,
and using (6), (10),(15), we obtain that

Υ̇ =

N∑
i=1

kp
∂H
∂pi

T

ṗi +

N∑
i=1

υTi υ̇i

=

N∑
i=1

υTi
(
kpMVi

(pi −CVi
) + kpMVi

CVi

− (kpMVi
pi + kdυi)

)
=

N∑
i=1

−kdυTi υi, (17)

which is negative semidefinite, that is, the asymptotic stability
of the system cannot be proven. However, suppose that S is the
set of all trajectories that keep Υ̇ ≤ 0. Since the trajectories
of the closed-loop system are inside the convex region Q,
S is a positive invariant set. Invoking the LaSalle invariance
principle, we can conclude about the stability of the system
as follows:

Υ̇ = 0 =⇒ υi = 0 =⇒ υ̇i = 0 =⇒ ui = 0 =⇒ pi = CVi

Therefore, for each UAV, pi = CVi
is the largest invariant set

corresponding to the CVC. As a result, the closed-loop system
is asymptotically stable. □

Remark 1: The computation of the control scheme (15) re-
quires the ith UAV to communicate with its Voronoi neighbors
in order to compute the mass and centroid of its Voronoi re-
gion. As a result, this control scheme is considered distributed.

Remark 2: The ith UAV’s motion tends to the centroid of
its Voronoi region when the control scheme (15) is employed.
Since the centroid always lies inside the Voronoi region, and
the Voronoi tessellations generate non-overlapping regions,
there will be no inter-UAV collision during the mission.

By applying the proposed control law (15), object avoidance
is not guaranteed, as it does not involve any movement
restriction of the UAV i ∈ V . Due to this fact, it is essential to
combine the PD control law uc,i with an obstacle avoidance
control law uo,i = −∇piUo,i such that the augmented control
scheme forces the multi-UAV system to reach its goal safely.
We proposed the following control scheme

ui = uc,i + uo,i (18)

with

uo,i =

|QT |∑
l=1

µocil

(
1

∥pi − qlT ∥
− 1

do

)
pi − qlT

∥pi − qlT ∥2
(19)

where µo is the gain of the obstacle-free term, do is the
minimum-accepted distance between UAV i and the object’s
boundary, and the binary variable cil, ∀ i ∈ V and ∀
l ∈ {1, . . . , |QT |} is defined as:

cil =

{
1, ∀ ∥pi − qlT ∥ ≤ do
0, otherwise. (20)

The stability of the multi-UAV system utilizing the aug-
mented control scheme (18), can be proved by considering
the following two cases. In the case that the UAV i ∈ V ,
is outside any repulsive region, that is, ∥pi − qlT ∥ ≥ do, ∀
l ∈ {1, . . . , |QT |}, all binary variables cil = 0 which remove
the obstacle avoidance term from the proposed control law.
Consequently, (17) holds true and the system is asymptotically
stable, as proved previously. Now, consider that the UAV
i ∈ V is inside at least one repulsive region such that
∥pi − qlT ∥ < do, thus the corresponding binary variables
cil = 1, and uo,i ̸= 0. Modifying the candidate Lyapunov

function Υ to be Υ = kpH+
∑N
i=1

1

2
υTi υi +

∑N
i=1 Uc,i, and

employed the control law ui, as in (18), then it is proved again
the asymptotic stability of the system.

As we have presented the entire methodology, the overall
process is outlined in Algorithm 1. To summarize, each UAV
obtains the position of its neighbors to calculate the centroid
of its Voronoi region, which is utilized in the distributed
control law. In addition, each UAV merges its target inspection
status set with its corresponding neighbor sets, resulting in the
updated density function that drives the UAV to uninspected
regions.



Algorithm 1 3D Inspection Algorithm

Require: A group of UAVs V = {1, . . . , N}, with initial
positions pi(0), i ∈ V , are located inside the inspection
region Q ∈ R3. Target points qlT ∈ QT are known to
the multi-UAV system. Each UAV i ∈ V should be able
to compute its Voronoi region Vi, and share information
with its Voronoi neighbors.

Ensure: Complete inspection of the target points qlT ∈ QT .
1: while Bi ̸= ∅ do
2: Acquires the position pj and target inspection status

set Bj , ∀ j ∈ Ni

3: Updates the set Bi = Bi ∨ Bj
4: Constructs its Voronoi region Vi(pi,pj), as in (8)
5: Computes the centroid CVi

of its Vi(pi,pj), as in (11)
6: Computes and applies the control input ui, as in (18)
7: Update the target inspection status Bi:
8: if f(∥q̄lT − pi∥) ≤ r then
9: Bi,k = 0, ∀ l ∈ {1, . . . , |QT |}

10: end if
11: end while

Fig. 3: Voronoi tessellation of the inspection region at t = 0.

VI. EVALUATION

Numerous simulations have been performed to demonstrate
the efficacy of the proposed methodology for the 3D inspection
of an object of interest by a multi-UAV system.

A. Simulation Setup

A numerical simulation is provided which was carried out
in a MATLAB environment on a 2.8GHz desktop computer
with 16GB of RAM. Consider a team of 5 quadrotor UAVs,
with dynamics (6), which are initially located inside a cuboid
inspection region of dimensions 180m × 180m × 40m. The
objective of the multi-UAV system is to inspect an object of
interest of dimensions 156m × 78m × 26m. More specifically,
a set of 132 target points, being part of the object’s surface and
denoted by purple circles, have to be inspected by the multi-
UAV system, as illustrated in Fig. 3. For achieving this goal,
density functions are utilized with the parameters α = 1 and
β = 0.0075 while the sensing range of each UAV is chosen
as r = 10m. The control gains are selected as kp = 0.32,
kd = 0.86, and µo = 1000 for a safety-region do = 12m.

B. Results

A group of five UAVs is initially located inside the in-
spection region at the random positions p0

1 = [10, 20, 15]Tm,
p0
2 = [30, 9, 14]Tm, p0

3 = [40, 17, 10]Tm, p0
4 = [15, 30, 5]Tm,

and p0
5 = [25, 20, 10]Tm, respectively. The initial Voronoi

tessellation of the inspection region is constructed, as illus-
trated in Fig. 3, with the generating points being the initial
positions of the UAVs. Each Voronoi cell is colored with the
corresponding UAV’s color.

In Fig. 4, we provide several simulation results. Initially, as
mentioned in the methodology, we project the target points in
order to generate collision-free trajectories that drive the multi-
UAV system to inspect the object of interest, as shown in Fig.
4a. During the mission, when a UAV is located sufficiently
close to a projected point, it automatically rotates its camera’s
FoV pointing to the corresponding target point on the object’s
surface, as depicted in Fig 4b. Thus, that point is captured from
the camera’s FoV with satisfactory quality. A facet consisting
of four target points, the facet vertices and the face center, is
considered inspected when all these target points lie in any
UAV camera’s FoV. Fig. 4c illustrates a time instant of the
UAVs’ trajectories and the inspected or uninspected facets.
The UAV’s trajectories that enable the full inspection of the
object of interest are depicted in Fig. 4d. More precisely, a
time-based facet inspection is provided in Fig. 4e which shows
at which time a facet was inspected. Finally, the collision-free
trajectories were generated utilizing the control inputs of Fig.
4f.

For further evaluation of the proposed methodology, the
aforementioned setup is compared with two different case
studies, using three UAVs and seven UAVs, respectively. As
depicted in Fig. 5, the evolution of cost functions of all three
case studies are compared. It is obvious that the setup with
three UAVs needs the largest amount of time, t3f = 111.8 s,
in order to minimize its cost function compared with the other
cases that need t5f = 38.6 s, t7f = 32.8 s respectively. As the
number of UAVs is increasing, it is shown that the mission
time for object inspection is decreasing. Fig. 6 illustrates the
percentage of inspection completeness for the case studies. Up
to t = 10 s, it is observed that the percentage of inspection
completeness, for all the cases, is approximately the same.
After that time, the inspection rates of both setups with five and
seven UAVs are similar, while the inspection rate of the setup
with three UAVs is slowed down. Furthermore, in all case
studies the percentage of inspection completeness reaches 100
% which enables the full inspection of the object of interest.

VII. CONCLUSION

In this work, we have proposed a methodology that solves
the problem of 3D object inspection using a multi-UAV
system. The objective function was minimized by designing
a distributed control law that generates safe trajectories for
the multi-UAV system, achieving the complete object inspec-
tion. Finally, the effectiveness of the proposed approach was
demonstrated through simulations. Future work may consider
trajectory optimization and real-world experiments.
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Fig. 4: Generated collision-free trajectories of a group of five UAVs for 3D inspection of the object of interest.
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Fig. 5: Comparison of the inspection cost function H for three
case studies.
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