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Abstract—Monitoring the perimeter of a wildfire in real time is
crucial for effective firefighting and decision-making. This paper
proposes a multi-UAV system that combines real-time infield data
with a fire propagation model to accurately predict the state of the
wildfire perimeter and improve fire prediction. To achieve this, a
data fusion scheme is used to merge historical data with real-time
measurements obtained from UAVs to update the fire propagation
model. The model is then used to predict the future perimeter
of the fire, which then guides the team of UAVs to track the
perimeter more accurately. The system has been tested through
simulation experiments, indicating its effectiveness in providing
accurate real-time wildfire perimeter propagation information.

Index Terms—Autonomous aerial vehicles, drones, fires, path
planning, real-time systems, remote monitoring

I. INTRODUCTION

Climate change has precipitated a multitude of adverse
effects, including rising temperatures, prolonged droughts, and
alterations in precipitation patterns. Consequently, wildfires’
frequency, intensity, and unpredictability have significantly
increased. The latest data from the recent EFFIS annual
report [1] highlights this disturbing trend recording the highest
number of fires since 2006, accompanied by the most severe
drought experienced in Europe in the past 500 years.

Effectively combating wildfires necessitates early detec-
tion, precise propagation estimation, and continuous tracking
[2]. Moreover, real-time information regarding the state of
the wildfire is vital for situational awareness and informed
decision-making when formulating appropriate action plans
to suppress fire spread and implement evacuation procedures
when deemed necessary [3].

Recently, the advent of unmanned aerial vehicles (UAVs)
has significantly improved real-time wildfire monitoring capa-
bilities. Compared to conventional methods like satellite image
inspection or manned aerial vehicles such as helicopters, UAVs
offer substantial advantages. They significantly reduce opera-
tional costs and minimize risks when compared to manned
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aerial vehicles. Additionally, UAVs are readily available and
equipped with a variety of sensors to provide immediate
coverage, surpassing the periodic coverage and lengthy revisit
times associated with satellite wildfire monitoring.

Over the past few years, a significant amount of research
has been dedicated to using UAVs for tracking wildfire prop-
agation. This has resulted in several methods being proposed
and reviewed [4]–[7]. The concept of using UAVs for wildfire
tracking was initially proposed in [2], which introduced a
cooperative control method for monitoring the fire perimeter.
By guiding a team of UAVs in clockwise and counterclockwise
directions around the fire perimeter, this method aimed to
minimize information latency and the frequency of updates to
the mission base station. The fire perimeter tracking problem
was also studied in [8], with the authors proposing cooperative
control for a team of UAVs based on optimizing utility
functions keeping the UAVs close to the fire boundary.

The authors in [9] have devised a coordination technique
that prioritizes the monitoring of critical wildfire areas using
a team of UAVs. They have implemented a method that directs
the UAVs to visit high-importance perimeter points more
frequently based on the fire’s spread rate instead of monitoring
the entire perimeter uniformly. In a similar vein, the authors in
[10] have focused on monitoring the faster-moving segment of
the fire frontier with UAVs, developing a sliding-mode control
algorithm that optimizes the UAVs’ movement towards the
rapidly moving fire region.

In [3], a distributed control framework is proposed that
allows a group of UAVs to monitor the spread of wildfires
collaboratively. By minimizing data loss from the onboard
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Fig. 1. The proposed multi-UAV system for wildfire perimeter monitoring that
integrates the UAVs’ sensing capabilities and a wildfire propagation model.



cameras and quantifying fire heat intensity levels, the UAVs
can monitor the perimeter as it expands while ensuring com-
plete wildfire coverage. The work in [11] proposed a similar
framework but with additional consideration for areas of
firefighter activity. The authors generate a fire-front uncertainty
map and a human uncertainty map from GPS signals received
by firefighters. By minimizing a dual-criteria objective func-
tion, they determine the positions that the UAVs must navigate
to monitor the fire and sense the firefighters. Finally, in [12],
the authors proposed a UAV-based system that monitors the
wildfire progression while periodically flying ahead of the fire
to collect valuable data that can aid in anticipating fire behavior
and movement.

In comparison to the previous aforementioned approaches,
in this work, we devise and propose a multi-UAV system
that integrates the UAVs’ sensing capabilities and a wildfire
propagation model to provide real-time state information on
the wildfire perimeter (see Fig. 1) further expanding our initial
work in [13]. The proposed system enables a team of UAVs
to navigate in specific wildfire perimeter segments so that the
uncertainty of the fire propagation model is minimized and
thus more accurately and efficiently track the fire perimeter.
Specifically, the proposed system consists of UAVs measuring
the fire perimeter, fuel type, and weather conditions. To
improve the accuracy of wildfire perimeter monitoring, we use
a data fusion scheme that combines historical data with real-
time data from onboard sensors. This feeds into a wildfire
propagation model, which generates real-time estimates of the
future perimeter state. Our perimeter tracking scheme then
calculates trajectories for UAVs to minimize the error between
the anticipated and actual perimeter. Finally, a guidance and
control scheme is utilized to ensure efficient navigation and
measurement collection by the UAV team.

The rest of this paper is organized as follows. Section
II discusses the wildfire propagation model utilized. Section
III formulates the problem. Section IV details the proposed
multi-UAV system for real-time wildfire perimeter propagation
monitoring. Section V presents simulation results demonstrat-
ing the method’s efficacy. Finally, Section VI offers some
concluding remarks.

II. WILDFIRE MODELLING PRELIMINARIES

The forward model is utilized in this work for character-
izing wildfire propagation mathematically. Specifically, based
on [14], [15], we implement the wildfire forward model, a
simplified version of the advanced FARSITE model [16], that
requires fewer inputs but still represents a realistic surface fire
propagation. The wildfire forward model can be described by
the following discrete-time function:

q(t+ 1) = f
(
q(t), u(t)

)
, ∀t ≥ 0 (1)

where q(t) = [q1(t), . . . , qN(t)(t)]
T denote the fire-front ver-

tices in the 2D plane that represents the wildfire perimeter in a
counterclockwise direction when they are connected together,
with q1(t) = qN(t)(t). The number of perimeter’s fire-fronts
in each time step is denoted with N(t) ∈ Z+, while q(0) = q0

and N(0) = N0 is the initial fire-front locations and number,
respectively. The input u(t) = [R(t), U(t), θ(t)] consists of
the matrices R,U, θ ∈ Rnx×ny where R denotes the steady-
state of fire spread rate, which can be calculated using the
Rothermel model [17] and the fuel characteristics, U is the
mid-flame wind speed, and θ is the wind direction. Lastly,
function f(·) includes the dynamical model and also the loop-
clipping and rediscretization algorithms, which we describe
in the sequel, and together calculate the wildfire perimeter
propagation.

Specifically, the dynamical model utilizes Huygens’
expansion-based approach to calculating the propagation of
each fire front in the 2D plane using the following discrete-
time dynamical model:

qi(t+ 1) = qi(t) + ∆tQi(t), ∀i = 1, · · · , N(t), (2)

where qi = [xi, yi]
T are the cartesian coordinates of i-th fire-

front vertex, while ∆t is the time step. Qi = [Xi, Yi]
T are the

orthogonal spread rate differentials (m min−1):

Xi =
a2 cθ(xs sθ + ys cθ)− b2 sθ(xs cθ − ys sθ)√

b2(xs cθ − ys sθ)2 + a2(xs sθ + ys cθ)2
+ c sθ,

Yi =
−a2 sθ(xs sθ + ys cθ)− b2 cθ(xs cθ − ys sθ)√

b2(xs cθ − ys sθ)2 + a2(xs sθ + ys cθ)2
+ c cθ,

(3)

where cθ and sθ is a shortened form for cos θ and sin θ,
respectively, while θ is the angle (rad, 0 ≤ θ < 2π) of
the wind direction measured from the positive y-axis in a
clockwise direction. xs = xi+1 − xi−1 and ys = yi+1 − yi−1

denote the component differentials representing the orientation
of the i-th vertex on the fire-front, while a, b and c (m min−1)
describe the shape of an elliptical fire at each vertex calculated
as follows:

a =
0.5(R+ R

HB )

LB
, b =

(R+ R
HB )

2
, c = b− R

HB
(3)

where R is the fire spread rate (m min−1), HB is the head
to back ratio given as HB = LB+(LB2−1)0.5

LB−(LB2−1)0.5 , and LB is the
length to breadth ratio given as LB = 0.936e0.2566U +
0.461e−0.1548U − 0.397, with U denoting the the mid-flame
wind speed (m s−1).

Because of non-uniform inputs (i.e., rate of spread and
weather), using only (2) to propagate each fire-front can gen-
erate internal loops in the perimeter representation rendering
it illogical and unusable [16]. These loops need to be removed
continuously using a loop-clipping filter. In this work, a loop-
clipping algorithm has been implemented that checks at each
time step if any perimeter segments intersect. It then removes
them accordingly to avoid the development of internal loops
and updates the number of fire-front vertices, i.e., N(t).

Another problem that arises when using (2) is that as the
perimeter expands, there is an increase in distance between the
fire-front vertices. This results in an erroneous perimeter repre-
sentation. To eliminate this error, a rediscretization algorithm
has been implemented that adds new vertices to the perimeter



sections with high curvature. The following condition is used
for determining where to add new vertices [14]:

max
(
cos

βi

2
, cos

βi−1

2

)
>

(Ω
ℓi

)2

, (4)

where βi (or βi−1) is the angle between the segments of
vertices qi+1, qi, qi−1 (or qi, qi−1, qi−2). ℓi = ∥qi − qi−1∥
is the distance between the subsequent vertices qi and qi−1,
and Ω is a positive user specified threshold parameter. If the
condition in (4) is true in any line segment of the perimeter,
then a new vertex is added at the midpoint of that segment
(i.e., ℓi

2 ), and the number of the fire-front vertices, i.e., N(t)
is updated accordingly. The algorithm runs recursively to the
newly generated segment halves, and new vertices are added
until the condition in (4) is satisfied by all the perimeters
segments.

III. PROBLEM FORMULATION

In an area affected by a wildfire, we aim to deploy a team of
UAVs or drones equipped with appropriate measurement sen-
sors. These UAVs must gather real-time data, which are then
used with a simulated wildfire model to provide continuous
updates on the current state of the fire perimeter.

Definition 1 (Wildfire Perimeter). We consider the true
wildfire perimeter as a dynamic set of fire-front vertices
q(t) = [q1(t), . . . , qN(t)(t)]

T connected in a counter-clockwise
direction in the 2D plane and propagate using (1) as described
in Section II.

Definition 2 (UAVs). A homogeneous team of UAVs
D = {D1, . . . ,DM} can be deployed to monitor and gather
real-time data from the wildfire. The position of the Dj UAV is
represented in the 3D space: pj = [xj , yj , zj ]

T ∈ R3, where
[x, y] ∈ R2 denotes the 2D plane coordinates while z ∈ R
denotes the altitude. Also, its movement in the 3D space is
represented by the discrete-time linear dynamical model:

pj(t+ 1) = pj(t) + vj(t)∆t, (5)

where ∆t is the time step and vj ∈ R3 is the control input
that is represented by the speed vector vj = [vxj , v

y
j , v

z
j ]

T

The UAVs are equipped with a hyperspectral camera
mounted on the underside, complemented by advanced soft-
ware that enables measurement of the fire perimeter and the
fire’s spread rate through identifying the area fuel types (i.e.,
vegetation) [18]. As shown in Fig. 2, the camera has a square
field of view (FOV), with side length l given by:

lj(t) = 2zj(t) tan
φ

2
, (6)

where zj ∈ pj is the Dj UAV altitude, and φ = 2 tan−1 S
2F is

the angular FOV with S denoting the sensor size, and F is the
lens focal length both available from the camera specifications.
In addition, every UAV is fitted with a wind and weather sensor
(WWS) that enables the measurement of wind speed and
direction while flying in 3D space. Therefore, each Dj UAV
through its onboard sensors acquires the following real-time
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Fig. 2. Each UAV, through its onboard sensors and relative to its position
and FOV, can measure the wildfire perimeter, rate of spread, and wind speed
and direction.

measurement vector relative to its position pj(t) and FOV:
[qm(t), Rm(t), Um(t), θm(t)] that consists of measurements
for the fire-front position qm(t), the fire spread rate Rm(t),
the wind speed Um(t) and wind direction θm(t).

Definition 3 (Simulated Wildfire Perimeter).
The simulated wildfire perimeter is represented
by the dynamic set of fire-front vertices
q̂(t) = [q̂1(t), . . . , q̂N̂(t)(t)]

T connected in a counter-
clockwise direction in the 2D plane. The simulated wildfire
also propagates using (1), with q̂(0) = q(0). However, the
input matrices used are obtained from historical data of
the area (i.e., u = ud = [Rd, Ud, θd]) or fused data, which
combines historical data with real-time data from the UAVs
(i.e., u = uf = [Rf , Uf , θf ]).

Problem 1 (Wildfire Perimeter Monitoring). Given an area
affected by a wildfire with perimeter q(t) and imprecise area
historical data for simulating the wildfire perimeter q̂(t),
devise a system that guides a team of M UAVs to specific
locations for real-time measurements that will not only depict
the growing fire perimeter but also update the model in order
to further more accurately predict the future fire perimeter and
more appropriately guide the UAVs to their next locations.

To assess the performance of the proposed system, we
consider the overall mean error distance between the true
wildfire perimeter q(t) and the simulated wildfire perimeter
q̂(t) over a period T given by

Ed =
1

T

T∑
t=1

εd(t), (7)

where εd(t) is the mean error distance between q(t) and q̂(t)
at time t, i.e.,

εd(t) =
1

Nd(t)

Nd(t)∑
i=1

di(t), (8)

where di, i = 1, . . . , Nd is the i-th Euclidian distance between
wildfire and simulated perimeter segments. These distances
are computed by initially finding the midpoints κ̂ in between
the simulated perimeter fire-front vertices, i.e., κ̂i =

q̂i+q̂i+1

2 ,
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Fig. 3. Distance illustration between wildfire perimeter q(t) (black line)
and wildfire simulated perimeter q̂(t) (blue line). Red arrows are Euclidean
distances d between true and simulated perimeters, red circles are the
midpoints κ̂, and red squares are the perpendicular intersection points κ.

and then the points κ in the corresponding wildfire perimeter
determined by the perpendicular intersection from each κ̂i

point, as depicted in Fig. 3 [19]. Finally, each Euclidian
distance di can be computed by di = ∥κ̂i − κi∥.

IV. PROPOSED SYSTEM ARCHITECTURE

The proposed system is illustrated in Fig. 4, which con-
sists of four interconnected modules that we describe in the
following paragraphs.
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Fig. 4. Overview of the proposed multi-UAV wildfire perimeter monitoring
system architecture.

A. Real-time Wildfire Simulation

The proposed system utilizes the wildfire model described in
Section II to simulate the wildfire perimeter in real-time using
fused historical data and UAV real-time measurements after
their processing by the Data Fusion (DF) module (see Sec-
tion IV-B). Specifically, the following discrete-time dynamical
model is used, similar to (1):

q̂(t+ 1) = f
(
q̂f (t), uf (t)

)
, (9)

where q̂(t) = [q̂1(t), . . . , q̂(t)N̂(t)]
T are the simulated fire-

front perimeter vertices, while q̂f (t) are the fused perimeter
vertices and uf (t) = [Rf (t), Uf (t), θf (t)] are the fused input
matrices available from DF module. The system output is
the simulated wildfire perimeter q̂(t) and is provided to the
firefighting mission commander.
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Fig. 5. Data fusion module process for a perimeter segment.

B. Data Fusion

The DF module fuses historical data with infield measure-
ments from the UAVs to enhance real-time wildfire simulation
and, subsequently UAV guidance accuracy.

Specifically, the historical data matrices for fire spread rate
(Rd), wind speed (Ud), and wind direction (θd), as well as
real-time measurements (Rm(t), Um(t), θm(t)) obtained by
the UAV are fused through the DF module. Firstly, the fused
matrices are initialized with the available historical data, i.e.,
Rf = Rd, Uf = Ud, θf = θd. After the UAVs are deployed,
the fused matrices are continually updated with real-time mea-
surements based on the UAVs’ positions (p1(t), · · · , pM (t)).
In other words, the real-time measurements for fire spread
rate (Rm(t)), wind speed (Um(t)), and wind direction (θm(t))
are mapped according to each UAV position and added to
their respective fused matrices (Rf , Uf , θf ). This results in
an updated spatial-temporal input vector (uf = [Rf , Uf , θf ])
that is used in (9).

The DF module also fuses the simulated wildfire with real-
time perimeter measurements from the UAVs. The process is
depicted in Fig. 5. In particular, Fig. 5(a) illustrates segments
of the true perimeter q(t) and the simulated perimeter q̂(t)
before the arrival of the UAV. After the arrival of the UAV
(see Fig. 5(b)), the true fire-front vertices are identified and
measured and then fused with the already available perimeter
measurements qm(t). Subsequently, the fire-front measure-
ments qm(t) ∈ FOV are fused with the simulated perimeter
q̂(t) to obtain the fused simulated perimeter q̂f (t) as shown
in Fig. 5(c). The process repeats for all the UAVs in the
team, providing the fused simulated perimeter q̂f (t) that is
used in (9). Data fusion is essential to the system since it
provides continuously available real-time measurements for
the perimeter state and necessary inputs that improve the
accuracy of wildfire simulation.

C. Perimeter Tracking

The PT module is responsible for calculating trajectories
for all the UAVs in the team. These trajectories are denoted
by T = {T1, . . . ,TM}, and they are computed based on
each UAV position in the 3D space and the distance between
the simulated perimeter q̂(t) and the measured perimeter
qm(t). Each trajectory Tj = [w1, . . . , wNw

] represents the
calculated path for the UAV Dj and consists of waypoints
wi = [xi, yi, zi] that the UAV needs to track. Initially, PT



computes the trajectories when a UAV reaches the wildfire
perimeter. Then, new trajectories are computed if any UAV in
the team reaches the final waypoint of its current trajectory.

PT utilizes Algorithm 1 for computing the trajectories. To
explain the process, Algorithm 1 is divided into three parts:
Waypoints Generation, Perimeter Partition, and Trajectories
Calculation. Additionally, Fig. 6 visually represents the tasks
involved in generating waypoints and partitioning.

Algorithm 1 Perimeter Tracking
1: Input: q̂(t), qm(t), p1(t) · · · pM (t)
2: Output: T = {T1, . . . ,TM}
3: if Dj reaches final waypoint wNw

∈ Tj then
4: [W,dm]←waypointsGeneration

(
q̂(t), qm(t)

)
5: [R1, . . . , RM ]← perimeterPartition

(
W,p1(t) · · · pM (t)

)
6: A← generateAdjacencyMatrix

(
W

)
7: for each UAV Dj do
8: wS ← findStartWaypoint

(
pj(t), Rj

)
9: wE ← findEndWaypoint

(
pj(t), Rj , d

m
)

10: Tj ← dijkstra(A,wS , wE)
11: end for
12: end if

1) Waypoints Generation: To generate the waypoints, we
first calculate the distances dmi , i = 1, . . . , Nm

d between the
simulated perimeter q̂(t) and the measured perimeter qm(t).
This is done in a similar manner as explained in Section III for
calculating the distances di. Next, we compute the waypoints
set W by using the 2D coordinates of κ̂m (which are the
intersection points of the perpendicular line extended from κm

points, much like explained in Section III for κ and κ̂ points,
respectively) at an altitude zi. Therefore, each waypoint wi ∈
W is denoted by wi = [κ̂m

i , zi]. The altitude is found based
on (6), which ensures that the FOV of the UAV adequately
covers both q̂(t) and qm(t) perimeters:

zi =
2s dmi
tan φ

2

, (10)

where s ≥ 1 is a user-defined scaling factor parameter.
2) Perimeter Partitioning: By utilizing the set of waypoints

W and the current positions of the UAVs, i.e., p1(t) . . . pM (t),
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Fig. 6. Waypoints generation and perimeter partition into regions.

the perimeter can be partitioned into M regions, denoted as
R1, . . . , RM , which corresponds to the number of UAVs in
the team. An example is illustrated in Fig. 6. Each region,
denoted as Rj , contains the waypoints that are nearer to UAV
Dj , and can be determined using:

Rj = {w |
∥∥λ(w, pj(t))∥∥ ≤ ∥∥λ(w, pi(t))∥∥ ,∀j ̸= i}, (11)

where, λ(w, pj(t)) represents the length distance from the
position pj(t) of UAV Dj to any waypoint w ∈ W while
considering passing through the intermediate waypoints.

3) Trajectories Calculation: In order to determine the
trajectory of each UAV, we begin by creating an adjacency
matrix A based on a set of waypoints W . The matrix is
sparse since it only includes connections between adjacent
waypoints, with the distance between them acting as a weight
(di = ∥wi+1 − wi∥). This ensures that the UAVs remain
outside the wildfire and only fly along its perimeter. We then
determine the starting and ending waypoints for each UAV
Dj . The starting waypoint wS is the closest waypoint within
the UAV Dj monitoring area Rj , i.e.,

wS = argmin
w∈Rj

∥pj(t)− w∥ (12)

The ending waypoint wE for Dj is the waypoint within its
monitoring area Rj associated with the largest distance dm.
Finally, we calculate the trajectory Tj for each UAV using
Dijkstra’s shortest path algorithm. We use the adjacency matrix
A, with the starting waypoint wS as the initial node and the
ending waypoint wE as the final node. This process is repeated
for all the UAVs in the team.

D. Guidance and Control

Algorithm 2 Guidance and Control
1: Input: Tj = [w1, . . . , wNw

], pj(t)
2: Output: vj(t) = [vxj (t), v

y
j (t), v

z
j (t)]

T

3: i← 1
4: ϵ← Vref∆t
5: while ∥p(t)− wNw

∥ > ϵ do
6: if ∥pj(t)− wi∥ ≤ ϵ then
7: i← i+ 1
8: end if
9: dw(t)← wi − pj(t)

10: ϕ(t)← tan−1(
dy
w(t)

dx
w(t) )

11: θ(t)← tan−1(

√
(dx

w(t))2+(dy
w(t))2

dz
w(t) )

12: vxj (t) = Vref cosϕ(t) sin θ(t)
13: vyj (t) = Vref sinϕ(t) sin θ(t)
14: vzj (t) = Vref cos θ(t)
15: end while

The Guidance and Control (GC) module is responsible for
providing the necessary control inputs to each UAV in the
team so that they follow the computed trajectories. Algorithm
2 is utilized by the GC for each Dj ∈ D. Specifically, at
each time step, GC computes the distance in each dimension
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Fig. 7. 3D polar coordinates system.

(i.e., dxw, d
y
w, dzw as shown in Fig. 7) between the current

position pj(t) of UAV Dj and the waypoint wi ∈ Tj that
must be reached, via dw(t) = wi − pj(t). Using the 3D
polar coordinates system displayed in Fig. 7, GC calculates
the horizontal azimuth angle ϕ(t) measured on the xy plane
from the x-axis (Alg. 2-line 10) and the azimuth angle θ(t)
measured from the z axis (Alg. 2-line 11). Finally, the control
speed vector is determined by computing the speed in each
dimension (Alg. 2-lines 12-14) using the reference speed Vref
set by the user. A UAV Dj is deemed to have reached a
waypoint wi ∈ Tj when ∥pj(t)− wi∥ ≤ ϵ, where ϵ = Vref∆t
is the distance error threshold. If a UAV in the team reaches
its last waypoint wNw ∈ Tj , then the calculation of new
trajectories for all the UAVs in the team is triggered.

V. SIMULATION RESULTS

We conducted simulation experiments in the Matlab en-
vironment to evaluate the proposed system. The simulation
outcomes were obtained using the parameter values specified
in Table I. In order to have various fire shapes to assess the
proposed system, the grid G × G is divided into a random
number of cells. Subsequently, a rate of spread value is
assigned to each cell from a normal distribution where the
mean value µR takes values between 0-120m/min. Also, the
wind direction changes over time through the simulation (see
Table I). In all the simulations, the wildfire starts around
[10km, 10km] while the UAVs are deployed from a depot at
[11.5km, 11.5km]. The first UAV was deployed two minutes
after the start of the fire, followed by subsequent UAVs every
minute. Lastly, as indicated in Table I, we considered three
scenarios for the available historical data. In Scenario A, the
historical data values (i.e., Rd, Ud, θd) were underestimated
by 40% from the actual values (i.e., R, U , θ). In Scenario
B, the historical data values were close-estimated by 5% from
the actual values, and finally, in Scenario C, the historical data
values were over-estimated by 40% from the actual values.

The first simulation results presented in Fig. 8 demonstrate
how the proposed system guides a team of three UAVs
to monitor the wildfire perimeter. The results of a single
simulation run are examined, displaying snapshots every 10
minutes of the movements of the three UAVs while monitoring
the wildfire perimeter as it spreads. In all snapshots, it is
evident that the three UAVs consistently keep track of the
wildfire perimeter, adjusting their altitudes as necessary to
always keep the perimeter within their field of view.

TABLE I
SIMULATION PARAMETERS VALUES

General

Time step: ∆t = 5s Simulation time: T = 120min

Wildfire Model Parameters

Grid size [G×G] : G = 25km Rediscret. threshold: Ω = 50m

Grid resolution: 1m
Wind direction (rad):
θ(t) ∼ N

(
µθ(t), σθ(t) =

π
36

)
µθ(0 ≤ t < 30) = π

4
µθ(30 ≤ t < 60) = 19

12
π

µθ(60 ≤ t < 90) = 5
12

π

µθ(t ≥ 90) = 5
36

π

Initial fire-fronts: N0 = 80

Initial position: [10km, 10km]

Rate of spread (m min−1) :
R ∼ N(µR=0-120, σR = 0.1µR)

Wind speed (m s−1) :
U ∼ N(µU = 2, σU = 0.2)

UAVs Parameters

Initial position [km]:
pj(0) = [11.5, 11.5, 0]

Deploy time of Dj : tj = jmin

Reference speed: Vref = 15m/s

Sensor size: S = 24mm Lens focal length: F = 24mm

Scaling factor: s = 2

Historical Data

Scenario A (under-estimated −40%) : Rd=0.6R,Ud=0.6U, θd=0.6θ

Scenario B (close-estimated 5%) : Rd=1.05R,Ud=1.05U, θd=1.05θ

Scenario C (over-estimated 40%) : Rd=1.4R,Ud=1.4U, θd=1.4θ

Fig. 9 shows the outcomes of 1500 simulation runs that
compare the effectiveness of the suggested system with vary-
ing accuracy levels of historical data and the number of UAVs.
Specifically, a total of 50 simulations are run for each number
of UAVs, with a total of 250 for each scenario computing
the overall mean error of the simulated wildfire as given in
(7). For direct comparison, we also included the overall mean
error of the simulated wildfire using only the historical data
and the overall mean error of the measured wildfire by the
UAVs. As can be seen from the results, the performance of
the proposed system is better in all scenarios and the number
of UAVs. In Figs. 9(a)&(c) where the accuracy of the historical
data is compromised, the error in the perimeter provided by
the proposed system is significantly lower compared to the
perimeter obtained by using historical data only. In Fig. 9(b),
where the accuracy of the historical data is close to the true
values, we can still observe that the proposed system still
provides less erroneous wildfire perimeter. From the results,
we can also observe that the proposed system’s overall mean
error improves when additional UAVs are utilized. Notably,
it is also more effective than relying solely on perimeter
measurements from UAVs since more UAVs are necessary to
match the proposed system performance. This indicates that
the proposed system is a resource-efficient solution that can
free up resources for other tasks or future use and redundancy.

Finally, Fig. 10 presents the mean error of the proposed
system as given in equation (8), with regards to the length
of the wildfire perimeter and the number of UAVs employed.
The outcomes are derived from the same simulation results
mentioned earlier. As can be observed, in all scenarios, the
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Fig. 8. Snapshots of the proposed system guiding a team of three UAVs to monitor the wildfire perimeter propagation in 10min time-steps. The FOV and
the trajectory of each UAV are shown in each snapshot.

mean error is proportional to the length of the perimeter. How-
ever, using more UAVs improves the error as the perimeter
increases.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a multi-UAV system that combines
the sensing capabilities of a team of UAVs along with a
wildfire propagation model to provide the real-time state of the
wildfire perimeter. As described, the proposed system guides
a team of UAVs capable of measuring the fire perimeter,
fuel type, and weather conditions. A wildfire model is used
for providing real-time simulations of the perimeter state.
The simulation perimeter values, together with the UAVs’
perimeter measurements, are used by the perimeter tracking
scheme for calculating trajectories that minimize the error
between the wildfire perimeter and the simulated perimeter.
A guidance and control scheme guides the UAVs to follow
the calculated trajectories and receive measurements. Lastly,
a data fusion scheme fuses available historical data with real-
time measurements providing updated inputs to the wildfire
model, improving its performance. The proposed system is
evaluated in a simulation environment showcasing its ability to
monitor the wildfire perimeter and provide accurate perimeter
state information.

In the future, we aim to evaluate the system using data
from actual wildfire events. Furthermore, we would like to
explore the possibility of adding and removing UAVs from
the monitoring team in a dynamic manner, taking into account
the battery limitations of each UAV. Moreover, communication
challenges that UAVs face in real-world scenarios and the
impact of adverse weather conditions on UAV operations will
also be evaluated to improve the proposed system’s robustness
and practical applicability in real wildfire situations.
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