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Why Indoor Positioning?

People spend most of their time
indoors, e.g. shopping malls,
libraries, airports, university
campuses

Massive availability of mobile
devices with wireless connectivity

Satellite-based geolocation, e.g.
GPS, is infeasible indoors

Interest in indoor location-aware
applications, e.g. in-building
guidance, asset tracking, event
detection
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Indoor Applications

Figure: FastMall Figure: Aisle411 Figure: Micello



Introduction
Location Estimation Using RBF Networks
SNAP Algorithm with RSS Fingerprints

Conclusions

Why Indoor Positioning?
Indicative Applications
Overview of existing solutions
Positioning with RSS fingerprints

Indoor Applications

Figure: Point Inside (a mall) Figure: Point Inside (an airport)
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Indoor Applications

Figure: Nokia World Indoor Navigator Figure: Indoor WiFi Tracker
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Technologies for Indoor Positioning

IR (e.g. Firefly)

Ultrasound (e.g. Active Bat, Cricket)

RFID (e.g. WhereNet)

UWB (e.g. Ubisense)

Cameras (e.g. Easy Living)

WLAN (e.g. Ekahau)

Why WLAN technology?

Ubiquitous deployment of WLAN infrastructure (APs)

Most mobile devices are equipped with WLAN adapters
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Measurements and Algorithms

Angle of Arrival (AOA)

Time of Arrival (TOA)

τi =
di
c

Time Difference of Arrival (TDOA)

ρi ,j =
di−dj

c

Received Signal Strength (RSS)

rssi = K − 10n log di [dBm]

Why RSS measurements?

AOA/TOA/TDOA measurements require additional hardware

RSS values are constantly monitored and easily collected



Introduction
Location Estimation Using RBF Networks
SNAP Algorithm with RSS Fingerprints

Conclusions

Why Indoor Positioning?
Indicative Applications
Overview of existing solutions
Positioning with RSS fingerprints

Measurements and Algorithms

Angle of Arrival (AOA)

Time of Arrival (TOA)

τi =
di
c

Time Difference of Arrival (TDOA)

ρi ,j =
di−dj

c

Received Signal Strength (RSS)

rssi = K − 10n log di [dBm]

Why RSS measurements?

AOA/TOA/TDOA measurements require additional hardware

RSS values are constantly monitored and easily collected



Introduction
Location Estimation Using RBF Networks
SNAP Algorithm with RSS Fingerprints

Conclusions

Why Indoor Positioning?
Indicative Applications
Overview of existing solutions
Positioning with RSS fingerprints

Measurements and Algorithms

Angle of Arrival (AOA)

Time of Arrival (TOA)

τi =
di
c

Time Difference of Arrival (TDOA)

ρi ,j =
di−dj

c

Received Signal Strength (RSS)

rssi = K − 10n log di [dBm]

Why RSS measurements?

AOA/TOA/TDOA measurements require additional hardware

RSS values are constantly monitored and easily collected



Introduction
Location Estimation Using RBF Networks
SNAP Algorithm with RSS Fingerprints

Conclusions

Why Indoor Positioning?
Indicative Applications
Overview of existing solutions
Positioning with RSS fingerprints

Measurements and Algorithms

Angle of Arrival (AOA)

Time of Arrival (TOA)

τi =
di
c

Time Difference of Arrival (TDOA)

ρi ,j =
di−dj

c

Received Signal Strength (RSS)

rssi = K − 10n log di [dBm]

Why RSS measurements?

AOA/TOA/TDOA measurements require additional hardware

RSS values are constantly monitored and easily collected



Introduction
Location Estimation Using RBF Networks
SNAP Algorithm with RSS Fingerprints

Conclusions

Why Indoor Positioning?
Indicative Applications
Overview of existing solutions
Positioning with RSS fingerprints

Measurements and Algorithms

Angle of Arrival (AOA)

Time of Arrival (TOA)

τi =
di
c

Time Difference of Arrival (TDOA)

ρi ,j =
di−dj

c

Received Signal Strength (RSS)

rssi = K − 10n log di [dBm]

Why RSS measurements?

AOA/TOA/TDOA measurements require additional hardware

RSS values are constantly monitored and easily collected



Introduction
Location Estimation Using RBF Networks
SNAP Algorithm with RSS Fingerprints

Conclusions

Why Indoor Positioning?
Indicative Applications
Overview of existing solutions
Positioning with RSS fingerprints

Attenuation Models vs Fingerprints

Attenuation models are insufficient
indoors

Complex propagation conditions
(multipath, shadowing) due to walls
and ceilings
RSS value fluctuates over time at a
given location
Variable # of detected APs
Unpredictable factors (people
moving, doors, humidity)

Fingerprints

Capture the RSS-location
dependency
More robust to signal variations
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Fingerprint-based Positioning

Offline phase: Build RSS radio map

n APs deployed in the area
Fingerprints ri = [ri1, . . . , rin]

T

Series ri(t), t = 1, . . . ,T
Training set contains N = l · T
fingerprints rk , k = 1, . . . ,N
Averaging r i =

1
T

∑T

t=1 ri (t)

Online phase: Positioning

Fingerprint s = [s1, . . . , sn]
T is

observed
Obtain an estimate ℓ̂ using the
radio map
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Deterministic Approach

Deterministic positioning methods

Location is estimated as a convex combination of the reference locations
ℓi by using the K locations with the shortest distances between r i and s.

ℓ̂ =

K∑

i=1

wi∑K

j=1 wj

ℓ′i (1)

where {ℓ′1, . . . , ℓ
′
l} denotes the ordering of reference locations with

respect to increasing distance ‖r i − s‖.

K -Nearest Neighbor (KNN) variants

NN: K = 1

KNN: K 6= 1, wi =
1
K

Weighted KNN: K 6= 1, wi =
1

‖r i−s‖
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Probabilistic Approach

Probabilistic positioning methods

Location ℓ is treated as a random vector that can be estimated by
calculating the conditional probabilities p(ℓi |s) (posterior) given s.

p(ℓi |s) =
p(s|ℓi )p(ℓi )

p(s)
=

p(s|ℓi )p(ℓi)∑l

i=1 p(s|ℓi )p(ℓi )
(2)

p(s|ℓi) =

n∏

j=1

p(sj |ℓi) (3)

where p(s|ℓi ) is the likelihood, p(ℓi) is the prior and p(s) is a constant.
Positioning variants

Maximum Likelihood (ML): ℓ̂ = argmaxℓi p(s|ℓi )

Maximum A Posteriori (MAP): ℓ̂ = argmaxℓi p(s|ℓi )p(ℓi)

Minimum Mean Square Error (MMSE): ℓ̂ = E[ℓ|s] =
∑l

i=1 ℓip(ℓi |s)
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RBF-based Positioning Method I

Data Regression

ℓ(s) =

C∑

i=1

wiu(s, ci )

where u(s, ci ) =
ϕ(‖s−ci‖)∑
C
j=1 ϕ(‖s−cj‖)

C : number of centers

ci : n-dimensional center

ϕ(‖s − c‖) = exp
(
− 1

2‖s − c‖2
)

wi : 2-dimensional weights

1


n


1


2


C


w
1


w
2


w
C
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RBF-based Positioning Method II

Training (offline)

System of linear equations using the N = l · T reference fingerprints

ℓi =
C∑

j=1

wju
(
ri (t), cj

)
, i = 1, . . . , l , t = 1, . . . ,T (4)

Matrix form Uw = d

U ∈ RN×C : each row contains the responses to a particular
fingerprint

w ∈ RC×2: unknown weights

d ∈ RN×2: outputs that represent the location coordinates

The weights can be easily determined through linear algebra.
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RBF-based Positioning Method III

Positioning (online)

ℓ̂(s) =

C∑

j=1

wju(s, cj) (5)
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Center Selection

standard RBF (sRBF)

C = N , i.e. ci = r i , i = 1, . . . ,N

w = U−1d

High memory requirements
Computational complexity (weight calculation and positioning)
Prone to overfitting

clustered RBF (cRBF)

C = l , i.e. ci = r i , i = 1, . . . , l

w = U+d , U+ = (UTU)−1UT

Better than selecting C < N centers randomly or
experimentally or by using a center selection algorithm (e.g.
OLS)
Computationally efficient due to the compact size
Better generalization
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Distance Calculation

Set of basis functions

ϕ(‖s − cj‖) = exp
(
−

1

2
(s − cj)

TΣ−1(s − cj)
)
, j = 1, . . . ,C .

Σ = σ2I , where σ2 is a common variance (width) for all n APs

Select σ2 experimentally and fine-tune with validation data
Use a heuristic so that σ2

∝ dmax , where
dmax = max ‖ci − cj‖ for i , j = 1, . . . ,C

Σ = diag(σ2
1, σ2

2 , . . . , σ2
n)

σ2
k is the sample variance of the k-th AP

Can be used to build an AP selection methodology for
dimensionality reduction

A non-diagonal covariance matrix Σ does not work well in practice,
because the RSS values from neighboring APs are independent
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Properties of the cRBF Positioning Method

Reduced network size

Unknown weights are fast and easy to compute
Low memory requirements for storing few centers and weights
Low computational complexity during positioning

Practicality & Scalability

Retraining time for new data is reduced with appropriate
matrix operations (e.g. MLP has to be trained from scratch)
Network size is decided in a principled manner (e.g. MLP size
is selected experimentally)
Easily scaled to other setups with different number of APs,
reference locations or fingerprints
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Indoor Positioning System

Offline phase

1 Collect and store reference
fingerprints

2 Train RBF to determine network
weights

Online phase

1 Transmit a small set of parameters
2 Use the observed fingerprint to

self-locate

Properties

1 Reduced start-up time
2 Low communication overhead
3 Privacy and Security
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SNAP Algorithm

Subtract on Negative Add on Positive (SNAP) algorithm

Event detection in binary sensor networks

Low computational complexity and fault tolerance

Objective

Adapt the SNAP algorithm to the WLAN setup

Enhance the performance in terms of fault tolerance and accuracy

Methodology

Modify the original SNAP algorithm to use WLAN RSS fingerprints

Examine the fault tolerance of SNAP using our fault models

Improve the accuracy by exploiting the RSS levels in the fingerprints
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Positioning with Binary Data

SNAP Algorithm

1 Region of Coverage (RoC)
RoCj ⊆ L, j = 1, . . . , n

2 Likelihood Matrix L

L(i , j) =





+1, j ∈ S AND ℓi ∈ RoCj

−1, j 6∈ S AND ℓi ∈ RoCj

0, ℓi 6∈ RoCj

LVi =

n∑

j=1

L(i , j)

3 Location Estimation

ℓ̂(s) = argmax
ℓi∈L

LVi
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SNAPz: Improving the Accuracy of SNAP I

Idea

If an AP is detected, then the user is more likely to reside in the locations
inside the RoC that have similar RSS values to the observed RSS value.

Zone of Coverage (ZoC)

Zm =
[
min+ (m − 1)

max −min

M
, min+m

max −min

M

]
, m = 1, . . . ,M

ZoCmj ⊆ RoCj , m = 1, . . . ,M and j = 1, . . . , n

{ZoCmj : ℓi |r ij ∈ Zm, i = 1, . . . , l}

RoCj =
⋃M

m=1 ZoCmj
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SNAPz: Improving the Accuracy of SNAP II

SNAPz algorithm

L(i , j) =





+1, j ∈ S AND ℓi ∈ ZoCmj

0, j ∈ S AND ℓi ∈ ZoC(m−1)j ∪ ZoC(m+1)j

−1, j ∈ S AND ℓi ∈ RoCj −
⋃m+1

k=m−1 ZoCkj

−1, j 6∈ S AND ℓi ∈ RoCj

0, ℓi 6∈ RoCj

If an AP is detected with certain RSS value, then the user resides

with high probability in the zone where the reference locations have
similar RSS values

with some probability in the neighboring zones

with low probability in the remaining zones



Introduction
Location Estimation Using RBF Networks
SNAP Algorithm with RSS Fingerprints

Conclusions

SNAP Algorithm
Positioning with Binary Data
SNAPz: Improving the Accuracy of SNAP
Experimental Results

Experimental Results I

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15

M
e
a
n
 P

o
s
it
io

n
in

g
 E

rr
o
r 

(m
)

Number of Zones (M)

Figure: Performance of SNAPz for varying number of zones.



Introduction
Location Estimation Using RBF Networks
SNAP Algorithm with RSS Fingerprints

Conclusions

SNAP Algorithm
Positioning with Binary Data
SNAPz: Improving the Accuracy of SNAP
Experimental Results

Experimental Results II

Table: Positioning Error in meters

Mean Median Std Min Max

KNN 2.70 2.39 1.61 0.16 8.78
MMSE 2.46 2.18 1.63 0.09 8.99
cRBF 2.38 2.07 1.51 0.08 7.87
SNAPz 3.64 3.37 2.41 0.06 13.21

Table: Computational Complexity

additions multiplications exp sorts time (msec)

KNN (2n − 1)l nl 0 l 1.25
MMSE (2n+ 3)l − 3 (2n + 4)l nl 0 2.18
cRBF (2n+ 2)l − 3 (n + 3)l l 0 1.73
SNAPz (n − 1)l 0 0 l 0.49

l : # of reference locations, n: # of APs, sorts: # of floats to be sorted
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Concluding Remarks

Introduction to indoor positioning and fingerprint methods

Fingerprint positioning method based on RBF networks

High level of accuracy, scalable and applicable in different
WLAN setups
Positioning system based on the proposed RBF method

SNAP algorithm with WLAN RSS fingerprints

Trade-off between positioning accuracy and computational
complexity
Investigate the actual power savings on mobile devices
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Open Research Issues

Main focus of fingerprint positioning methods so far has been on
reducing the positioning error.

Computational Complexity

Time required to estimate location is important, because it affects the
battery life of low power mobile devices.

Fault Tolerance

It is desirable to provide smooth performance degradation in the presence
of faults, due to unpredicted failures or malicious attacks.

Heterogeneous Devices

Maintain an adequate level of accuracy for various types of devices
(different WLAN adapters), without collecting device-specific fingerprints.
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