

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components

Conclusion

Overview of Outdoor and Indoor Positioning Technologies and Systems

Christos Laoudias

KIOS Research Center for Intelligent Systems and Networks Department of Electrical and Computer Engineering University of Cyprus, Nicosia, Cyprus

- KIOS Center
- Positioning

Outdoor Positioning

- Control
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion

Introduction

Outdoor Positioning

Indoor Positioning

Airplace Platform

Conclusion

- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion

Vision

KIOS is an inspiring environment for conducting high quality, interdisciplinary research for the benefit of society and promotion of the knowledge-based economy.

Mission

- Instigate interdisciplinary interaction and promote collaboration between industry, academia and research organizations in high-tech areas
- Contribute to the advancement of knowledge in the areas of computational intelligence and system design, and apply these methodologies in monitoring, control and management of large-scale, complex, and safety-critical systems

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace Components
- Conclusion

Environmental Resource

Research Activities

- ► 10 European projects
- ► 12 Cyprus RPF projects
- ▶ 1 UCY internal project

More than 50 Researchers

- 9 ECE Faculty Member
- ▶ 13 Post-Docs and Research Fellows
- 32 PhD students
- 5 MS students
- Several undergraduate students

Introduction

- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

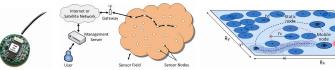
- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion

- KIOS Center
- Positioning

Outdoor Positioning


- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace Components
- Conclusion

ndetect

Koloc Motivation for Positioning

Introduction

- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace Components
- Conclusion

- Target tracking
- ► UAV missions
- Missile flight

- ▶ Network: 100m (cep67), 300m (cep95)
- Mobile: 50m (cep67), 150m (cep95)

- Navigation ►
- Guidance
- POI locator

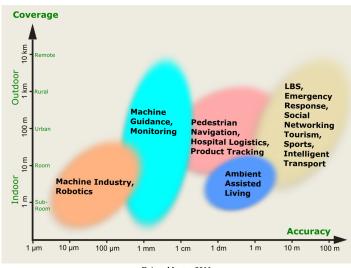
Applications of Positioning Systems

Introduction

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks


Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components

Conclusion

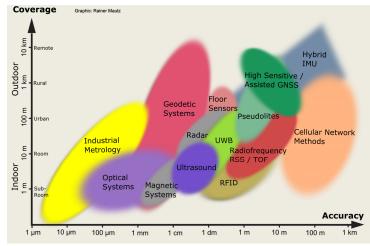
KOLOS Technologies for Positioning

Introduction

- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Cellular Networks


Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace Components

Conclusion

Rainer Mautz, 2011

Satellite-based positioning

- Introduction
- KIOS Center
- Positioning
- Outdoor Positioning
- Satellites
- Cellular Networks
- Indoor Positioning
- Technologies
- WiFi Positioning
- Airplace Platform
- System Architecture
- Airplace
- Components
- Conclusion

source: nist.gov

source: NASA

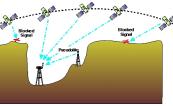
- GPS started in 1973 and became fully operational in 1994 (originally 6 constellations with 4 satellites, 31 as of 2008)
- Position determined by precisely timing the satellite signals (4 satellites required for 3D position, 3-5m accuracy)
- Russian GLONASS, European Galileo (planned 2014), Chinese COMPASS (planned 2020), India and Japan follow

Facts

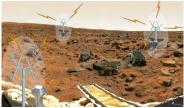
- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Cellular Networks


Indoor Positioning

- Technologies
- WiFi Positioning


Airplace Platform

- System Architecture
- Airplace
- Components

Conclusion

Source: wirelessdictionary.com

Self-Calibrating Pseudolite Array, Stanford ARL

Objective

Augment satellite coverage in severely shadowed environments (e.g. mining pits, planetary rover navigation, urban canyons)

Features

- Requires ground-based transceivers and achieves submeter level accuracy
- ► Synchronization, multipath, near-far problem and legal issues

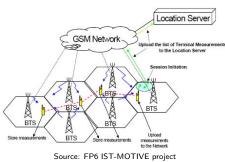
K<ἶOς Cellular Networks (GSM, UMTS, ...)

Introduction

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks


Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components

Conclusion

Source: wikipedia

Objective

- GPS is battery hungry, has high start-up time, low availability in urban areas
- Use signalling in cellular networks for positioning, as a GPS back-up solution or to enhance GPS (A-GPS)

Measurements

Unique cell identifier

Introduction

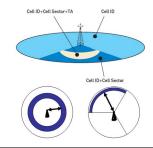
- KIOS Center
- Positioning

Outdoor Positioning

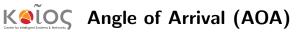
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning


Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion


Advantages

- Low Cost: No modifications to handset or network
- Usable with existing equipment
- Fast response: No calculations needed

x,y

- Low accuracy ranging from 50m (urban) to 30km (rural)
- Serving cell is not always the nearest cell

- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Cellular Networks

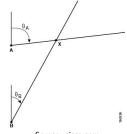
Indoor Positioning

- Technologies
- WiFi Positioning

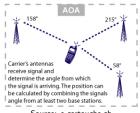
Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion

Measurements


Signal arrival angle

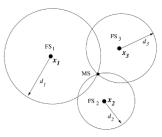
Advantages


- Requires only 2 base stations
- No modifications to the mobile devices

- LOS conditions
- Low accuracy
- Additional equipment (antenna arrays, directional antennas)

Source: cisco.com

Measurements


Signal propagation time between the transmitter and the receiver

Advantages

No modifications to the devices

Disadvantages

- Knowledge of the exact transmission times
- Precisely synchronized clocks (e.g. 100 nanoseconds can result in 30 meters distance error)
- Requires additional equipment (Measuring Units)

 $\tau_i = \frac{d_i}{d_i}$

Introduction - KIOS Center

Positioning Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components

Conclusion

Time Difference of Arrival (TDOA)

Measurements

Time differences of the signal arriving at multiple base stations

Advantages

Introduction

Outdoor Positioning

- Satellites

- Cellular Networks

Indoor Positioning

Airplace Platform

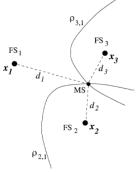
- System Architecture - Airplace

- Technologies - WiFi Positioning

Components Conclusion

- KIOS Center Positioning

- Exact time of signal transmission is not required
- Good accuracy, 60m (rural) 200m (urban)


Disadvantages

- Requires additional equipment (Measuring Units) at the base stations
- Synchronization is still required

Stuber G.L., 1999

30 March 2012

Received Signal Strength (RSS)

Measurements

Signal strength of the transmitted signal

Introduction

- KIOS Center
- Positioning

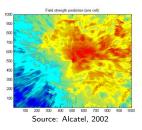
Outdoor Positioning

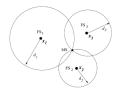
- Satellites
- Cellular Networks

Indoor Positioning

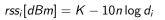
- Technologies
- WiFi Positioning

Airplace Platform


- System Architecture
- Airplace
- Components


Conclusion

Advantages


- Already monitored as part of the standard network functionality
- No modifications to the devices
- Low deployment cost

- Moderate accuracy in rural and urban areas
- Requires calibration of the signal propagation model

Source: Stuber G.L., 1999

- KIOS Center
- Positioning

Outdoor

Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion

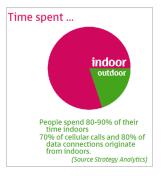
έιος Why Indoor Positioning?

Introduction

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks


Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion

 People spend most of their time indoors, e.g. shopping malls, airports, university campuses

C Why Indoor Positioning?

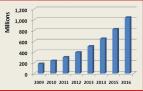
Introduction

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning


- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion

- People spend most of their time indoors, e.g. shopping malls, airports, university campuses
- Massive availability of mobile devices with wireless connectivity

Source: Telecom Trends International, Inc.

Keloς Why Indoor Positioning?

Introduction

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion

- People spend most of their time indoors, e.g. shopping malls, airports, university campuses
- Massive availability of mobile devices with wireless connectivity
- Satellite-based geolocation, e.g. GPS, is infeasible indoors

Keloς Why Indoor Positioning?

Introduction

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components

Conclusion

- People spend most of their time indoors, e.g. shopping malls, airports, university campuses
- Massive availability of mobile devices with wireless connectivity
- Satellite-based geolocation, e.g. GPS, is infeasible indoors
- Indoor location-aware applications, e.g. in-building guidance, asset tracking, event detection

- KIOS Center
- Positioning

Outdoor Positioning

- Positionin
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components

Conclusion

Figure: FastMall

Figure: Aisle411

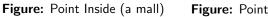
Figure: Micello

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning


- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components

Conclusion

Figure: Point Inside (an airport)

- KIOS Center
- Positioning

Outdoor Positioning

- Positionin
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion

Figure: Nokia Indoor Navigator

Figure: Airplace Platform

K

Introduction

- KIOS Center
- Positioning

Outdoor Positioning

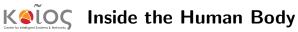
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion



Source: google images

- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace Components
- Conclusion

K@LOC Inside the Human Body

Introduction

- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components

Conclusion

Capsule Endoscopy

Positioning of medicine capsules inside the human body using RF signals (K. Pahlavan, CWINS Group)

Measurements

Custom IR cameras

Introduction

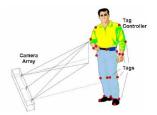
- KIOS Center
- Positioning

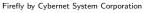
Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning


Airplace Platform


- System Architecture
- Airplace
- Components

Conclusion

Advantages

- Firefly delivers 3mm accuracy
- Tags are small and light-weight
- Simple system architecture, low installation and maintenance cost

Roy Wart

AT&T Labs Cambridge

- Interference from florescent light and sunlight
- Expensive hardware (e.g. Firefly: 1 camera array + 1 tag controller + 32 tags = \$27500, 2009)

- KIOS Center
- Positioning

Outdoor Positioning

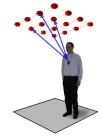
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components


Conclusion

Measurements TOA, TDOA

Advantages

- Inexpensive and easy to install
- Centimeter level accuracy

- Temperature dependency, affected by noise sources (e.g. jangling metal objects)
- Suffer from reflected ultrasound signals (multipath, Doppler shift)

Active Bat by AT&T Labs Cambridge

Cricket system, MIT

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

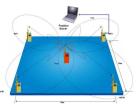
Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion

Advantages

Measurements

- No LOS requirement, no multipath distortion, less interference, high penetration
- Easily wearable and light tags


AOA, TOA, TDOA, signal reflection

► Very accurate (e.g. Ubisense has 15cm accuracy in 3D)

- Short range and computational cost
- ► Expensive equipment (Ubisense costs ~\$17000, 2009)

Ubisense system

Mitsubishi Electric Research Labs

- KIOS Center
- Positioning

Outdoor Positioning

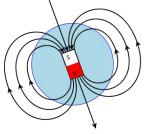
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion


Measurements

Magnetic flux density (coil or permanent magnets)

Advantages

- Centimeter level accuracy
- Magnetic sensors are small, robust and cheap
- Penetration through buildings

- Complexity of magnetic field and disturbances
- Limited coverage range

Source: wikipedia

MotionStar Wireless System

- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

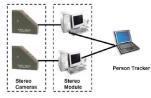
- Technologies
- WiFi Positioning

Airplace Platform

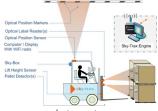
- System Architecture
- Airplace
- Components

Conclusion

Measurements


images, video

Advantages


- ► High accuracy
- ► No user carried equipment

Disadvantages

- Invasive installation, difficult to scale, high processing power
- Unreliable in dynamic environments (LOS required, light conditions, bad weather, fires)

Easy Living system by Microsoft

sky-trax system

Ος Inertial Measurement Units (IMU)

Introduction

- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion

Measurements

3D acceleration, 3D gyroscope, digital compass, dead reckoning

Advantages

- No infrastructure is required, sensor integrated into smartphones
- Light-weight, low power

VTT Research Center, Finland

Source: insidegnss.com

- Relative positioning system: requires initial location and frequent updates
- Drift introduces error

Radio Frequency IDentification (RFID)

Introduction

- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

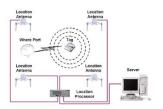
- System Architecture
- Airplace
- Components

Conclusion

Measurements

Cell of Origin, Signal Strength

Advantages


- Penetration, unobtrusive installation
- Low power system, light and easy to carry tags

RFID system by RF Code

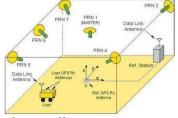
Disadvantages

- Numerous components installed and maintained
- Short range, close proximity

Wherenet Real Time Locating System

- Introduction
- KIOS Center
- Positioning

Outdoor


- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion

Source: gpsworld.com

 Installation of dedicated equipment vs Ubiquitous deployment of WiFi infrastructure (APs)

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion

 Installation of dedicated equipment vs Ubiquitous deployment of WiFi infrastructure (APs)

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace
- Components
- Conclusion

- Installation of dedicated equipment vs Ubiquitous deployment of WiFi infrastructure (APs)
- Specialized hand-held devices vs WiFi-enabled smartphones and tablets

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

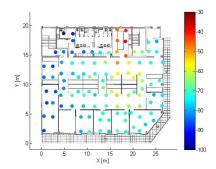
- Technologies
- WiFi Positioning

- System Architecture
- Airplace
- Components
- Conclusion

- Installation of dedicated equipment vs Ubiquitous deployment of WiFi infrastructure (APs)
- Specialized hand-held devices vs WiFi-enabled smartphones and tablets

- Introduction
- KIOS Center
- Positioning
- Outdoor
- Positioning
- Satellites
- Cellular Networks
- Indoor Positioning
- Technologies
- WiFi Positioning
- Airplace Platform
- System Architecture
- Airplace
- Components
- Conclusion

 AOA/TOA/TDOA measurements require additional hardware at the base stations or the mobile device


- Introduction
- KIOS Center
- Positioning
- Outdoor
- Positioning
- Satellites
- Cellular Networks
- Indoor Positioning
- Technologies
- WiFi Positioning
- Airplace Platform
- System Architecture
- Airplace
- Components
- Conclusion

- AOA/TOA/TDOA measurements require additional hardware at the base stations or the mobile device
- RSS values are constantly monitored as part of the standard functionality for network operating reasons and can be easily collected through OS APIs

 Complex propagation conditions (multipath, shadowing) due to walls and ceilings

Introduction

- KIOS Center
- Positioning

Outdoor

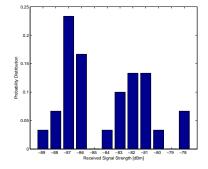
- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace
- Components
- Conclusion

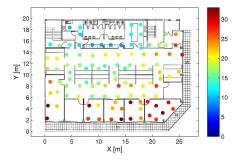
- Complex propagation conditions (multipath, shadowing) due to walls and ceilings
- RSS value fluctuates over time at a given location


Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning


- System Architecture
- Airplace
- Components
- Conclusion

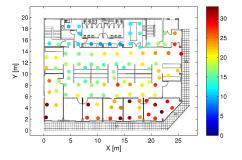
- Complex propagation conditions (multipath, shadowing) due to walls and ceilings
- RSS value fluctuates over time at a given location
- Variable number of detected WIFi APs

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning


- Technologies
- WiFi Positioning

- System Architecture
- Airplace
- Components
- Conclusion

- Introduction
- KIOS Center
- Positioning
- Outdoor
- Positioning
- Satellites
- Cellular Networks
- Indoor Positioning
- Technologies
- WiFi Positioning
- Airplace Platform
- System Architecture
- Airplace
- Components
- Conclusion

- Complex propagation conditions (multipath, shadowing) due to walls and ceilings
- RSS value fluctuates over time at a given location
- Variable number of detected WIFi APs
- Unpredictable factors (people moving, doors, humidity)

K

Introduction

- KIOS Center
- Positioning

Outdoor

Positioning

- Satellites
- Cellular Networks

Indoor Positioning

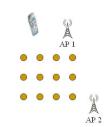
- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components

Conclusion

- KIOS Center
- Positioning


Outdoor

- Positioning
- Satellites
- Cellular Networks

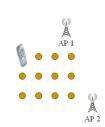
Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace
- Components
- Conclusion

- Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \ldots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{T} \sum_{t=1}^{T} r_i(t)$
- Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T$ is observed

- KIOS Center
- Positioning


Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

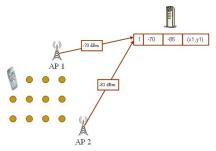
- System Architecture
- Airplace
- Components
- Conclusion

- Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \dots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{T} \sum_{t=1}^{T} r_i(t)$
- Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T$ is observed

Singerprint-based Positioning

Introduction

- KIOS Center
- Positioning


Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace
- Components
- Conclusion

- Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \ldots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{T} \sum_{t=1}^{T} r_i(t)$
- Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T$ is observed

είος Fingerprint-based Positioning

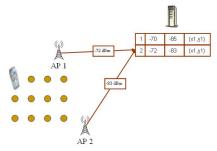
Introduction

- KIOS Center
- Positioning

Outdoor

Positioning

- Satellites
- Cellular Networks


Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components

Conclusion

- Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \ldots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{T} \sum_{t=1}^{T} r_i(t)$
- Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T$ is observed

Singerprint-based Positioning

AP 1

AP 2

Introduction

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace
- Components
- Conclusion

- Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \ldots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{T} \sum_{t=1}^{T} r_i(t)$
- Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T$ is observed

Singerprint-based Positioning

AP 1

AP 2

Introduction

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

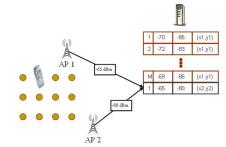
- System Architecture
- Airplace
- Components
- Conclusion

- Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \dots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{T} \sum_{t=1}^{T} r_i(t)$
- Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T$ is observed

Fingerprint-based Positioning

Introduction

- KIOS Center
- Positioning


Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace
- Components
- Conclusion

- Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \ldots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{T} \sum_{t=1}^{T} r_i(t)$
- Online phase: Positioning
 - Fingerprint $s = [s_1, \ldots, s_n]^T$ is observed
 - Obtain an estimate ℓ using the radio map

είος Fingerprint-based Positioning

AP 1

Introduction

- KIOS Center
- Positioning

Outdoor


- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion

(x1,y1)

(x1,y1)

(x1,y1)

(x2,y2)

(x2,y2)

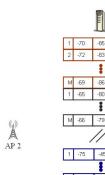
- Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \dots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{T} \sum_{t=1}^{T} r_i(t)$
- Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T$ is observed

AP 1

Introduction

- KIOS Center
- Positioning

Outdoor


- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion

(x1,y1)

(x1.y1)

(x2,y2)

(x2,y2)

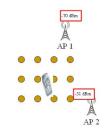
(xN,yN)

86 (x1,y1)

-43 (xN,yN)

- Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \ldots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{T} \sum_{t=1}^{T} r_i(t)$
- Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T$ is observed

- KIOS Center
- Positioning


Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace
- Components
- Conclusion

1	-70	-85	(x1,y1)
2	-72	-83	(x1,y1)
		1	
М	-69	-86	(x1,y1)
1	-65	-80	(x2,y2)
		:	
Μ	-66	-79	(x2,y2)
	/	//	
1	-75	-45	(xN,yN)
M	-72	-43	(xN,yN)

- Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \dots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{T} \sum_{t=1}^{T} r_i(t)$
- Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T$ is observed

Είος Fingerprint-based Positioning

Å

AP 1

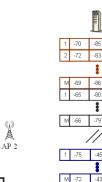
Positioning

Method

Introduction

- KIOS Center
- Positioning

Outdoor


- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components
- Conclusion

(x1,y1)

(x1,y1)

(x1,y1)

(x2,y2)

(x2,y2)

(xN,yN)

(xN,yN)

- Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \ldots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{T} \sum_{t=1}^{T} r_i(t)$
- Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T$ is observed

-70

-51

- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components

Conclusion

Deterministic positioning methods

Location is estimated as a convex combination of the reference locations ℓ_i by using the K locations with the shortest distances between \overline{r}_i and s.

$$\widehat{\ell} = \sum_{i=1}^{K} \frac{w_i}{\sum_{j=1}^{K} w_j} \ell'_i \tag{1}$$

where $\{\ell'_1, \ldots, \ell'_l\}$ denotes the ordering of reference locations with respect to increasing distance $\|\bar{r}_i - s\|$.

K-Nearest Neighbor (KNN) variants

- ► NN: *K* = 1
- KNN: $K \neq 1$, $w_i = \frac{1}{K}$
- Weighted KNN: $K \neq 1$, $w_i = \frac{1}{\|\overline{r}_i s\|}$

Probabilistic positioning methods

Location ℓ is treated as a random vector that can be estimated by calculating the conditional probabilities $p(\ell_i|s)$ (posterior) given s.

$$p(\ell_{i}|s) = \frac{p(s|\ell_{i})p(\ell_{i})}{p(s)} = \frac{p(s|\ell_{i})p(\ell_{i})}{\sum_{i=1}^{l} p(s|\ell_{i})p(\ell_{i})}$$
(2)
$$p(s|\ell_{i}) = \prod_{i=1}^{n} p(s_{i}|\ell_{i})$$
(3)

 $p(s|\ell_i)$ is the *likelihood*, $p(\ell_i)$ is the *prior* and p(s) is a constant.

Positioning variants

- Maximum Likelihood: $\hat{\ell} = \arg \max_{\ell_i} p(s|\ell_i)$
- Maximum A Posteriori: $\hat{\ell} = \arg \max_{\ell_i} p(s|\ell_i) p(\ell_i)$
- Minimum Mean Square Error: $\hat{\ell} = \mathbf{E}[\ell|s] = \sum_{i=1}^{l} \ell_i p(\ell_i|s)$

Introduction

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

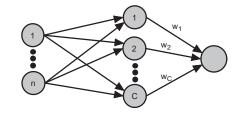
- System Architecture
- Airplace
- Components

Conclusion

Radial Basis Function Networks

Introduction

- KIOS Center
- Positioning

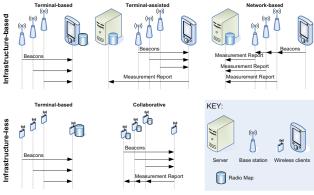

Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace
- Components
- Conclusion



$$\ell(s) = \sum_{i=1}^{C} w_i u(s, c_i) \qquad \triangleright \quad C: \text{ number of centers} \\ \epsilon_i: n \text{-dimensional center} \\ \mu(s, c_i) = \frac{\varphi(\|s - c_i\|)}{\sum_{j=1}^{C} \varphi(\|s - c_j\|)} \qquad \triangleright \quad \varphi(\|s - c\|) = \exp\left(-\frac{1}{2}\|s - c\|^2\right) \\ \epsilon_i: n \text{-dimensional center} \\ \epsilon_i: n \text{-dimensional ce$$

Positioning System Architectures

- Introduction
- KIOS Center
- Positioning
- Outdoor
- Positioning
- Satellites
- Cellular Networks
- Indoor Positioning
- Technologies
- WiFi Positioning
- Airplace Platform
- System Architecture
- Airplace Components
- Conclusion

Mikkel Baun Kjærgaard, 2007

Airplace System

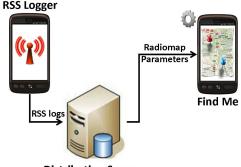
Introduction

- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning


- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace Components
- Conclusion

Terminal-based Infrastructure-assisted Architecture

- Low Communication Overhead: Avoids uploading the observed RSS fingerprint to the positioning server
- User Privacy & Security: Location is estimated by the user and not by the positioning server

Distribution Server

KOC RSS Logger Application

Facilitates collection and storage of the RSS data on the device.

- Developed around the Android RSS API for scanning and recording data samples in specific locations
- User-defined number of samples
- Users can contribute their data to Airplace for constructing and updating the radiomap through crowdsourcing

Introduction

- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Satellites
 Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture - Airplace
- Conclusion

Constructs the RSS radiomap and disseminates it to the requesting clients.

- Listens for connections from clients, that either contribute their RSS data or request the radiomap for positioning
 - Parses all available RSS log files and merges them in a single compact radiomap file
 - ► Fine tunes algorithm-specific parameters and stores them in a configuration file which is distributed with the radiomap

Start Run		nning Indoor Module	St	ate: Running	Start Running Outdoor	Module
	Indoor Radio	or Radio Map module Nap module started on polybi connections [indoor mode]	blo-laptop with IP:PORT [127.0.1.1:65510]		
Server Pending	Connections Outdoor Mo	ode				
A	A.	Client Host Name	Port	Time Connected	Type	Data E

Introduction

- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace
- Components
- Conclusion

Find Me Application

Implements the positioning client running on the users device.

- Connects to the server for downloading the radiomap and algorithm-specific parameters
- Algorithm bank with several algorithms (KNN, MMSE, etc.)
- Dual Operation Mode: Online (real-time positioning) or **Offline** (evaluation of algorithms)

Introduction

- KIOS Center
- Positioning

Outdoor

- Positioning
- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture - Airplace
- Conclusion

Kellos Airplace Video Demonstration

Introduction

- KIOS Center
- Positioning

Outdoor

Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace
- Conclusion

- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components

Conclusion

- KIOS Center
- Positioning

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components

Conclusion

► Moving from Google Maps to Google Floors!!

- KIOS Center
- Positioning

Outdoor

Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
- Components

Conclusion

Thank you for your attention Questions?

Contact

Christos Laoudias

KIOS Research Center for Intelligent Systems and Networks Department of Electrical & Computer Engineering University of Cyprus Email: laoudias@ucy.ac.cy

http://www2.ucy.ac.cy/~laoudias/index.html

Kôlos References

- Introduction
- KIOS Center
- Positioning
- Outdoor
- Positioning
- Satellites
- Cellular Networks
- Indoor Positioning
- Technologies
- WiFi Positioning
- Airplace Platform
- System Architecture
- Airplace
- Components

Conclusion

- R. Mautz, "Keynote: Overview of Indoor Positioning Technologies," Indoor Positioning and Indoor Navigation (IPIN), 2011.
- K. Pahlavan, X. Li, and J. Makela, "Indoor geolocation science and technology," *IEEE Communications Magazine*, vol. 40, no. 2, pp. 112–118, 2002.
- H. Liu, H. Darabi, P. Banerjee, and J. Liu, "Survey of wireless indoor positioning techniques and systems," *IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews*, vol. 37, no. 6, pp. 1067–1080, 2007.
- M. Kjærgaard, "A taxonomy for radio location fingerprinting," in 3rd international conference on Location-and context-awareness. Springer-Verlag, 2007, pp. 139–156.
- Y. Gu, A. Lo, and I. Niemegeers, "A survey of indoor positioning systems for wireless personal networks," *IEEE Communications Surveys & Tutorials*, vol. 11, no. 1, pp. 13–32, 2009.
- P. Bahl and V. Padmanabhan, "RADAR: an in-building RF-based user location and tracking system," in *IEEE International Conference on Computer Communications INFOCOM*, vol. 2, 2000, pp. 775–784.
- T. Roos, P. Myllymaki, H. Tirri, P. Misikangas, and J. Sievanen, "A probabilistic approach to WLAN user location estimation," *International Journal of Wireless Information Networks*, vol. 9, no. 3, pp. 155–164, Jul. 2002.
- C. Laoudias, P. Kemppi, C. G. Panayiotou, "Localization using radial basis function networks and signal strength fingerprints in WLAN," in *IEEE Global Telecommunications Conference (GLOBECOM)*, 2009, pp. 1–6.