

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks
- Indoor Positioning

macor r ositiom

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace
- Airplace Components

Conclusion

Indoor Positioning Technologies and Systems From Theory to Practice

Christos Laoudias

KIOS Research Center for Intelligent Systems and Networks Department of Electrical and Computer Engineering University of Cyprus, Nicosia, Cyprus

Introduction

- Motivation

Outdoor Positioning

 Satellites - Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components
- Conclusion

Introduction

- **Outdoor Positioning**
- **Indoor Positioning**
- **Airplace Platform**
- Conclusion

K♦**l**○**C** Motivation for Positioning

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture

- Airplace Components

Conclusion

- ▶ Target tracking
- ▶ UAV missions
- Missile flight

- ► Network: 100m (cep67), 300m (cep95)
- ► Mobile: 50m (cep67), 150m (cep95)

- Navigation
- Guidance
- ▶ POI locator

Applications of Positioning Systems

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components

Conclusion

Rainer Mautz, 2011

Technologies for Positioning

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace
- Components Conclusion

Satellite-based positioning

Introduction

Motivation

Outdoor Positioning

- Satellites Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components

Conclusion

source: nist.gov

source: NASA

Facts

- ► GPS started in 1973 and became fully operational in 1994 (originally 6 constellations with 4 satellites, 31 as of 2008)
- ▶ Position determined by precisely timing the satellite signals (4 satellites required for 3D position, 3-5m accuracy)
- ► Russian GLONASS, European Galileo (planned 2014), Chinese COMPASS (planned 2020), India and Japan follow

OC Pseudolites

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks
- Indoor Positioning

- Technologies

- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components

Conclusion

Self-Calibrating Pseudolite Array, Stanford ARL

Objective

Augment satellite coverage in severely shadowed environments (e.g. mining pits, planetary rover navigation, urban canyons)

Features

- ► Requires ground-based transceivers and achieves submeter level accuracy
- ► Synchronization, multipath, near-far problem and legal issues

K♦lOC Cellular Networks (GSM, UMTS, ...)

Introduction

Motivation

Outdoor Positioning

 Satellites - Cellular Networks

Indoor Positioning

- Technologies - WiFi Positioning

Airplace Platform - System Architecture

- Airplace Components

Conclusion

Source: wikipedia

Objective

- ► GPS is battery hungry, has high start-up time, low availability in urban areas
- ► Use signalling in cellular networks for positioning, as a GPS back-up solution or to enhance GPS (A-GPS)

K♦lOC Cell IDentity (CID)

Introduction

Motivation

Outdoor Positioning

 Satellites - Cellular Networks

Indoor Positioning

- Technologies - WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components
- Conclusion

Measurements Unique cell identifier

Advantages

- ► Low Cost: No modifications to handset or network
- Usable with existing equipment
- ► Fast response: No calculations needed

- ► Low accuracy ranging from 50m (urban) to 30km (rural)
- ► Serving cell is not always the nearest cell

Angle of Arrival (AOA)

Introduction

- Motivation

Outdoor Positioning

- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
 Airplace
 Components
- Conclusion

Measurements

Signal arrival angle

Advantages

- ► Requires only 2 base stations
- No modifications to the mobile devices

- ▶ LOS conditions
- Low accuracy
- Additional equipment (antenna arrays, directional antennas)

Source: cisco.com

OC Time of Arrival (TOA)

Introduction

Motivation

Outdoor Positioning

Satellites

Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning
- Airplace Platform

- System Architecture

- Airplace Components
- Conclusion

Measurements

Signal propagation time between the transmitter and the receiver

Advantages

► No modifications to the devices

Disadvantages

- ► Knowledge of the exact transmission times
- ► Precisely synchronized clocks (e.g. 100 nanoseconds can result in 30 meters distance error)
- ► Requires additional equipment (Measuring Units)

Source: Stuber G.L., 1999

$$\tau_i = \frac{d_i}{c}$$

Time Difference of Arrival (TDOA)

Introduction

- Motivation

Outdoor Positioning

- Satellites

- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components
- Conclusion

Measurements

Time differences of the signal arriving at multiple base stations

Advantages

- Exact time of signal transmission is not required
- ► Good accuracy, 60m (rural) 200m (urban)

Disadvantages

- Requires additional equipment (Measuring Units) at the base stations
- ► Synchronization is still required

Stuber G.L., 1999

$$\rho_{i,j} = \frac{d_i - d_j}{c}$$

Received Signal Strength (RSS)

Introduction

0 . .

Outdoor Positioning

- Satellites - Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components
- Conclusion

Measurements

Signal strength of the transmitted signal

Advantages

- Already monitored as part of the standard network functionality
- ► No modifications to the devices
- ► Low deployment cost

- Moderate accuracy in rural and urban areas
- ► Requires calibration of the signal propagation model

Source: Alcatel, 2002

Source: Stuber G.L., 1999

$$rss_i[dBm] = K - 10n \log d_i$$

K⊗loc RSS Cellular Positioning Video

Introduction

- Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace
- Components Conclusion

K♦lOC Why Indoor Positioning?

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace Components
- Conclusion

▶ People spend most of their time indoors, e.g. shopping malls, airports, university campuses

Why Indoor Positioning?

Introduction

Motivation

Outdoor Positioning

 Satellites - Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform - System Architecture

- Airplace Components
- Conclusion

▶ People spend most of their time indoors, e.g. shopping malls, airports, university campuses

 Massive availability of mobile devices with wireless connectivity

K♦**l**○**C** Why Indoor Positioning?

Introduction

Motivation

Outdoor Positioning

- Satellites - Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components
- Conclusion

▶ People spend most of their time indoors, e.g. shopping malls, airports, university campuses

- Massive availability of mobile devices with wireless connectivity
- ► Satellite-based geolocation, e.g. GPS, is infeasible indoors

K♦ **l**○ C Why Indoor Positioning?

Introduction

Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform - System Architecture

- Airplace Components
- Conclusion

- ▶ People spend most of their time indoors, e.g. shopping malls, airports, university campuses
- Massive availability of mobile devices with wireless connectivity
- ► Satellite-based geolocation, e.g. GPS, is infeasible indoors
- ► Indoor location-aware applications. e.g. in-building guidance, asset tracking, event detection

Target Indoor Environments

Introduction

- Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components

Conclusion

Source: google images

K���� Inside the Human Body

Introduction

- Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace

Components

Conclusion

K♦**l**○**C** Inside the Human Body

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace
- Components Conclusion

Capsule Endoscopy

Positioning of medicine capsules inside the human body using RF signals (K. Pahlavan, CWINS Group)

Infrared (IR)

Introduction

- Motivation

Outdoor

Positioning

- Cellular Networks

Indoor Positioning

- Technologies

- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components

Conclusion

Measurements

Custom IR cameras

Advantages

- ► Firefly delivers 3mm accuracy
- Tags are small and light-weight
- ► Simple system architecture, low installation and maintenance cost

Tag Controller Array Tags

Firefly by Cybernet System Corporation

- ► Interference from florescent light and sunlight
- ► Expensive hardware (e.g. Firefly: 1 camera array + 1 tag controller + 32 tags = \$27500, 2009)

AT&T Labs Cambridge

Ultrasound

Introduction

Motivation

Outdoor Positioning

- Satellites - Cellular Networks
- Indoor Positioning

- Technologies - WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components
- Conclusion

Measurements

TOA, TDOA

Advantages

- ► Inexpensive and easy to install
- ► Centimeter level accuracy

- ► Temperature dependency, affected by noise sources (e.g. jangling metal objects)
- Suffer from reflected ultrasound signals (multipath, Doppler shift)

Active Bat by AT&T Labs Cambridge

Cricket system, MIT

Ultra Wide Band (UWB)

Introduction

Motivation

Outdoor Positioning

 Satellites Cellular Networks

Indoor Positioning

- Technologies

- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components

Conclusion

Measurements

AOA, TOA, TDOA, signal reflection

Advantages

- ► No LOS requirement, no multipath distortion, less interference, high penetration
- Easily wearable and light tags
- ► Very accurate (e.g. Ubisense has 15cm accuracy in 3D)

- Short range and computational cost
- Expensive equipment (Ubisense) costs \sim \$17000, 2009)

Ubisense system

Mitsubishi Electric Research Labs

Radio Frequency IDentification (RFID)

Introduction

Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies - WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components
- Conclusion

Measurements

Cell of Origin, Signal Strength

Advantages

- ► Penetration, unobtrusive installation
- Low power system, light and easy to carry tags

←RF Code* M220 Reader

RFID system by RF Code

Disadvantages

- ► Numerous components installed and maintained
- ► Short range, close proximity

Wherenet Real Time Locating System

Magnetic

Introduction

Motivation

Outdoor Positioning

Satellites

- Cellular Networks

Indoor Positioning

- Technologies - WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components

Conclusion

Measurements

Magnetic flux density (coil or permanent magnets)

Advantages

- ► Centimeter level accuracy
- Magnetic sensors are small, robust and cheap
- Penetration through buildings

- Complexity of magnetic field and disturbances
- Limited coverage range

Source: wikipedia

MotionStar Wireless System

Optical Systems

Introduction

- Motivation

Outdoor Positioning

- Satellites

- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace

Conclusion

Measurements

images, video

Advantages

- ► High accuracy
- ► No user carried equipment

- Invasive installation, difficult to scale, high processing power
- Unreliable in dynamic environments (LOS required, light conditions, bad weather, fires)

Easy Living system by Microsoft

Inertial Measurement Units (IMU)

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks
- _____

Indoor Positioning

- Technologies
 WiFi Positioning
- Airplace Platform

- System Architecture

- Airplace Components
- Conclusion

Measurements

3D acceleration, 3D gyroscope, digital compass, dead reckoning

Advantages

- No infrastructure is required, sensor integrated into smartphones
- ► Light-weight, low power

- Relative positioning system: requires initial location and frequent updates
- Drift introduces error

VTT Research Center, Finland

K♦lOC Why WiFi?

Introduction

- Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components
- Conclusion

Source: gpsworld.com

► Installation of dedicated equipment vs Ubiquitous deployment of WiFi infrastructure (APs)

Introduction

- Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components
- Conclusion

► Installation of dedicated equipment vs Ubiquitous deployment of WiFi infrastructure (APs)

Why WiFi?

Introduction

- Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components
- Conclusion

- Installation of dedicated equipment vs Ubiquitous deployment of WiFi infrastructure (APs)
- Specialized hand-held devices vs WiFi-enabled smartphones and tablets

K♦lOC Why WiFi?

Introduction

Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components
- Conclusion

Source: gottabemobile.com

- ► Installation of dedicated equipment vs Ubiquitous deployment of WiFi infrastructure (APs)
- ► Specialized hand-held devices vs WiFi-enabled smartphones and tablets

K♦**l**○**C** Why RSS measurements?

Introduction

Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components
- Conclusion

► AOA/TOA/TDOA measurements require additional hardware at the base stations or the mobile device

K\leq **l**\color **W** hy **RSS** measurements?

Introduction

Motivation

Outdoor

- Positioning
- Satellites - Cellular Networks

Indoor Positioning

- Technologies - WiFi Positioning
- Airplace Platform

- System Architecture - Airplace Components
- Conclusion

- ► AOA/TOA/TDOA measurements require additional hardware at the base stations or the mobile device
- RSS values are constantly monitored as part of the standard functionality for network operating reasons and can be easily collected through OS APIs

Indoor Signal Propagation

Introduction

- Motivation

Outdoor

Positioning

- Cellular Networks

Indoor Positioning

- Technologies

- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components

Conclusion

 Complex propagation conditions (multipath, shadowing) due to walls and ceilings

Indoor Signal Propagation

Introduction

- Motivation

Outdoor Positioning

Satellites

- Cellular Networks
- Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components
- Conclusion

- ► Complex propagation conditions (multipath, shadowing) due to walls and ceilings
- ▶ RSS value fluctuates over time at a given location

Indoor Signal Propagation

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks

Centalai Nectionis

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace Components
- Conclusion

- Complex propagation conditions (multipath, shadowing) due to walls and ceilings
- ▶ RSS value fluctuates over time at a given location
- Variable number of detected WiFi APs

Indoor Signal Propagation

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks

Indoor Positioning

ilidoor Fositioilii

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components
- Conclusion

 Complex propagation conditions (multipath, shadowing) due to walls and ceilings

- ▶ RSS value fluctuates over time at a given location
- ► Variable number of detected WiFi APs
- ► Unpredictable factors (people moving, doors, humidity)

Signal Strength Fingerprints

Introduction

- Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace Components

Introduction

- Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace Components
- Conclusion

- ► Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \dots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$
- Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T \text{ is observed}$
 - ► Obtain an estimate ê using the radio map

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace Components
- Conclusion

- ► Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \dots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$
- ► Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T \text{ is observed}$
 - Obtain an estimate $\widehat{\ell}$ using the radio map

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components

- ► Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \dots, r_{in}]^T$
 - Averaging $\bar{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$
- ► Online phase: Positioning
 - ► Fingerprint $s = [s_1, ..., s_n]^T$ is observed
 - Obtain an estimate $\widehat{\ell}$ using the radio map

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks

- Centilal Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components

- ► Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \dots, r_{in}]^T$
 - Averaging $\bar{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$
- Online phase: Positioning
 - ► Fingerprint $s = [s_1, ..., s_n]^T$ is observed
 - Obtain an estimate $\widehat{\ell}$ using the radio map

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks
- _____

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace Components
- Conclusion

1	-70	-85	(x1,y1)
2	-72	-83	(x1,y1)
		:	
М	-69	-86	(x1,y1)

- ► Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \dots, r_{in}]^T$
 - Averaging $\bar{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$
- Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T$ is observed
 - Obtain an estimate $\widehat{\ell}$ using the radio map

Introduction

- Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace Components
- Conclusion

1	-70	-85	(x1,y1)
2	-72	-83	(x1,y1)
		:	
М	-69	-86	(x1,y1)

- ► Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \dots, r_{in}]^T$
 - Averaging $\bar{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$
- Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T \text{ is observed}$
 - ► Obtain an estimate ê using the radio map

Introduction

- Motivation

Outdoor Positioning

- Satellites

- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components

- ► Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \dots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$
- ► Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T \text{ is observed}$
 - Obtain an estimate $\widehat{\ell}$ using the radio map

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture

- Airplace Components

1	-70	-85	(x1,y1)
2	-72	-83	(x1,y1)
		:	
М	-69	-86	(x1,y1)
1	-65	-80	(x2,y2)
		:	
М	-66	-79	(x2,y2)

- ► Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \dots, r_{in}]^T$
 - Averaging $\bar{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$
- ► Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T \text{ is observed}$
 - ► Obtain an estimate $\widehat{\ell}$ using the radio map

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks

- Celiulai Network

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace

 Airplace Components

- ► Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \dots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$
- Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T$ is observed
 - Obtain an estimate $\widehat{\ell}$ using the radio map

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace Components
- Conclusion

- ► Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \dots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$
- Online phase: Positioning
 - Fingerprint $s = [s_1, \dots, s_n]^T \text{ is observed}$
 - ► Obtain an estimate ê using the radio map

Introduction

- Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture
- Airplace Components
- Conclusion

- ► Offline phase: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \dots, r_{in}]^T$
 - Averaging $\overline{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$
- ► Online phase: Positioning
 - Fingerprint $s = [s_1, ..., s_n]^T$ is observed
 - Obtain an estimate $\widehat{\ell}$ using the radio map

KIOC Deterministic Approach

Introduction

Motivation

Outdoor Positioning

 Satellites Cellular Networks

Indoor Positioning

- Technologies - WiFi Positioning
- Airplace Platform

- System Architecture

- Airplace Components
- Conclusion

Deterministic positioning methods

Location is estimated as a convex combination of the reference locations ℓ_i by using the K locations with the shortest distances between \overline{r}_i and s.

$$\widehat{\ell} = \sum_{i=1}^{K} \frac{w_i}{\sum_{j=1}^{K} w_j} \ell_i' \tag{1}$$

where $\{\ell'_1, \dots, \ell'_l\}$ denotes the ordering of reference locations with respect to increasing distance $\|\bar{r}_i - s\|$.

K-Nearest Neighbor (KNN) variants

- \triangleright NN: K=1
- \blacktriangleright KNN: $K \neq 1$, $w_i = \frac{1}{K}$
- ▶ Weighted KNN: $K \neq 1$, $w_i = \frac{1}{\|\overline{r}_i s\|}$

K♦lOC Probabilistic Approach

Introduction

Motivation

Outdoor Positioning

Satellites

Cellular Networks

Indoor Positioning

- Technologies - WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components
- Conclusion

Probabilistic positioning methods

Location ℓ is treated as a random vector that can be estimated by calculating the conditional probabilities $p(\ell_i|s)$ (posterior) given s.

$$p(\ell_i|s) = \frac{p(s|\ell_i)p(\ell_i)}{p(s)} = \frac{p(s|\ell_i)p(\ell_i)}{\sum_{i=1}^{I} p(s|\ell_i)p(\ell_i)}$$
(2)

$$p(s|\ell_i) = \prod_{j=1}^n p(s_j|\ell_i)$$
 (3)

 $p(s|\ell_i)$ is the *likelihood*, $p(\ell_i)$ is the *prior* and p(s) is a constant.

Positioning variants

- ▶ Maximum Likelihood: $\widehat{\ell} = \arg\max_{\ell} p(s|\ell_i)$
- ▶ Maximum A Posteriori: $\hat{\ell} = \arg \max_{\ell} p(s|\ell_i) p(\ell_i)$
- ▶ Minimum Mean Square Error: $\hat{\ell} = \mathbf{E}[\ell|s] = \sum_{i=1}^{l} \ell_i p(\ell_i|s)$

Radial Basis Function Networks

Introduction

- Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

- System Architecture - Airplace Components
- Conclusion

$$\ell(s) = \sum_{i=1}^{C} w_i u(s, c_i) \qquad \blacktriangleright C: \text{ number of centers}$$

$$v(s, c_i) = \frac{\varphi(\|s - c_i\|)}{\sum_{j=1}^{C} \varphi(\|s - c_j\|)} \qquad \blacktriangleright \varphi(\|s - c\|) = \exp\left(-\frac{1}{2}\|s - c\|^2\right)$$

$$v(s, c_i) = \frac{\varphi(\|s - c_i\|)}{\sum_{j=1}^{C} \varphi(\|s - c_j\|)} \qquad \blacktriangleright w_i: 2-\text{dimensional weights}$$

Positioning System Architectures

Introduction

- Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System

Architecture
- Airplace

Components

Mikkel Baun Kjærgaard, 2007

Airplace System

Introduction

- Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System

- Airplace

Conclusion

Terminal-based Infrastructure-assisted Architecture

- ► Low Communication Overhead: Avoids uploading the observed RSS fingerprint to the positioning server
- ▶ User Privacy & Security: Location is estimated by the user

http://www2.ucy.ac.cy/~laoudias/pages/platform.html

RSS Logger Application

Introduction

- Motivation

Outdoor Positioning

- Cellular Networks
- Indoor Positioning

muoor Fositionin

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture
- Airplace
Components

Conclusion

Facilitates collection and storage of the RSS data on the device.

- ► Developed around the Android RSS API for scanning and recording data samples in specific locations
- User-defined number of samples
- ► Users can contribute their data to Airplace for constructing and updating the radiomap through crowdsourcing

Distribution Server

Constructs the RSS radiomap and disseminates it to the requesting clients.

- ► Listens for connections from clients, that either contribute their RSS data or request the radiomap for positioning
- ► Parses all available RSS log files and merges them in a single compact radiomap file
- ► Fine tunes algorithm-specific parameters and stores them in a configuration file which is distributed with the radiomap

Coate Indoor Radionap Coate Indoor Radionap

Introduction

- MOLIVALIO

Outdoor Positioning

- Satellites - Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform - System Architecture

- Airplace Components

Find Me Application

Introduction

Motivation

Outdoor Positioning

- Satellites Cellular Networks
- Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform - System Architecture

- Airplace

Conclusion

Implements the positioning client running on the users device.

- ► Connects to the server for downloading the radiomap and algorithm-specific parameters
- Algorithm bank with several algorithms (KNN, MMSE, etc.)
- ▶ Dual Operation Mode: **Online** (real-time positioning) or Offline (evaluation of algorithms)

Airplace Video Demonstration

Introduction

- Motivation

Outdoor Positioning

- Satellites

- Cellular Networks
- Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace

Future lies Indoors

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace Components

Future lies Indoors

Introduction

- Motivation

Outdoor Positioning

- Satellites - Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace

Components Conclusion

▶ Moving from Google Maps to Google Floors!!

Introduction

- Motivation

Outdoor Positioning

- Satellites
- Cellular Networks

Indoor Positioning

- Technologies
- WiFi Positioning

Airplace Platform

- System Architecture - Airplace

Conclusion Conclusion

Thank you for your attention Questions?

References

Introduction

Outdoor

Positioning - Satellites

- Cellular Networks

Indoor Positioning

- Technologies - WiFi Positioning
- WILL OSICIONIII

Airplace Platform - System Architecture

- Airplace Components

- R. Mautz, "Keynote: Overview of Indoor Positioning Technologies," Indoor Positioning and Indoor Navigation (IPIN), 2011.
- K. Pahlavan, X. Li, and J. Makela, "Indoor geolocation science and technology," *IEEE Communications Magazine*, vol. 40, no. 2, pp. 112–118, 2002.
- H. Liu, H. Darabi, P. Banerjee, and J. Liu, "Survey of wireless indoor positioning techniques and systems," *IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews*, vol. 37, no. 6, pp. 1067–1080, 2007.
- M. Kjærgaard, "A taxonomy for radio location fingerprinting," in 3rd international conference on Location-and context-awareness. Springer-Verlag, 2007, pp. 139–156.
- Y. Gu, A. Lo, and I. Niemegeers, "A survey of indoor positioning systems for wireless personal networks," *IEEE Communications Surveys & Tutorials*, vol. 11, no. 1, pp. 13–32, 2009.
- P. Bahl and V. Padmanabhan, "RADAR: an in-building RF-based user location and tracking system," in *IEEE International Conference on Computer Communications INFOCOM*, vol. 2, 2000, pp. 775–784.
- T. Roos, P. Myllymaki, H. Tirri, P. Misikangas, and J. Sievanen, "A probabilistic approach to WLAN user location estimation," *International Journal of Wireless Information Networks*, vol. 9, no. 3, pp. 155–164, Jul. 2002.
- C. Laoudias, P. Kemppi, C. G. Panayiotou, "Localization using radial basis function networks and signal strength fingerprints in WLAN," in IEEE Global Telecommunications Conference (GLOBECOM), 2009, pp. 1–6.