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Technologies and Measurements

Why WLAN technology? (instead of Ir, Ultrasound, RFID, etc)

Ubiquitous deployment of WLAN infrastructure (APs)

Most mobile devices are equipped with WLAN adapters

Why RSS measurements? (instead of AOA/TOA/TDOA)

Angle and timing measurements require additional hardware

RSS values are constantly monitored and easily collected

Why fingerprints? (instead of attenuation model)

Attenuation models are insufficient indoors

Fingerprints capture the RSS-location dependency and are more
robust to signal variations
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Motivation of our work

Main focus of fingerprint positioning methods so far has been on reducing
the positioning error which is in the order of 2-10m depending on the

underlying method (deterministic, probabilistic, neural network, etc)

experimentation parameters (number of fingerprints collected,
resolution of the reference locations, density of the APs)

Computational Complexity

Time required to estimate location is important, because it affects the
battery life of low power mobile devices.

Fault Tolerance

It is desirable to provide smooth performance degradation in the presence
of faults, due to unpredicted failures or malicious attacks.
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SNAP Algorithm

Subtract on Negative Add on Positive (SNAP)1 algorithm

Event detection in binary sensor networks

Low computational complexity and fault tolerance

Objectives

Adapt the SNAP algorithm to the WLAN setup and exploit RSS
fingerprints

Enhance the performance in terms of accuracy and fault tolerance
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Positioning with Binary Data

SNAP Algorithm

1 Region of Coverage (RoC)
RoCj ⊆ L, j = 1, . . . , n

2 Likelihood Matrix L

L(i , j) =





+1, j ∈ S AND ℓi ∈ RoCj

−1, j 6∈ S AND ℓi ∈ RoCj

0, ℓi 6∈ RoCj

LVi =

n∑

j=1

L(i , j)

3 Location Estimation

ℓ̂(s) = argmax
ℓi∈L

LVi
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Example application of SNAP
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SNAPz: Improving the Accuracy of SNAP I

Idea

If an AP is detected, then the user is more likely to reside in the locations
inside the RoC that have similar RSS values to the observed RSS value.

Zone of Coverage (ZoC)

Zm =
[
min+ (m − 1)

max −min

M
, min+m

max −min

M

]
, m = 1, . . . ,M

ZoCmj ⊆ RoCj , m = 1, . . . ,M and j = 1, . . . , n

{ZoCmj : ℓi |r ij ∈ Zm, i = 1, . . . , l}

RoCj =
⋃M

m=1 ZoCmj
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SNAPz: Improving the Accuracy of SNAP II

SNAPz algorithm

L(i , j) =





+1, j ∈ S AND ℓi ∈ ZoCmj

0, j ∈ S AND ℓi ∈ ZoC(m−1)j ∪ ZoC(m+1)j

−1, j ∈ S AND ℓi ∈ RoCj −
⋃m+1

k=m−1 ZoCkj

−1, j 6∈ S AND ℓi ∈ RoCj

0, ℓi 6∈ RoCj

If an AP is detected with certain RSS value, then the user resides

with high probability in the zone where the reference locations have
similar RSS values

with some probability in the neighboring zones

with low probability in the remaining zones
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SNAPft-z: Improving the Fault Tolerance of SNAPz

AP failures during positioning

A subset of the APs that would otherwise be present in s, are no longer
detected and their negative contributions may introduce high errors.

Modified binary SNAP algorithm

L(i , j) =





+1, j ∈ S AND ℓi ∈ RoCj

0, j 6∈ S AND ℓi ∈ RoCj

0, ℓi 6∈ RoCj

SNAPft-z algorithm

We incorporate the idea of zones into this modified algorithm to build a
fault tolerant SNAP variant.
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Measurement Setup

Experimentation area

Area 110x45m on the 2nd floor at
VTT Research Center, Finland

107 reference locations with 2-3m
spacing

31 WLAN APs (9.7 APs detected
on average)

Training data

30 fingerprints per reference
location (3210 fingerprints in total)

Testing data

Route of 192 locations sampled 3
times (576 fingerprints in total)
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Computational Complexity

Table: Computational Complexity of Positioning Methods

additions multiplications exp sorts time (msec)

KNN (2n − 1)l nl 0 l 1.25
MMSE (2n+ 3)l − 3 (2n + 4)l nl 0 2.18
SNAPz (n − 1)l 0 0 l 0.49

l : # of reference locations, n: # of APs, sorts: # of floats to be sorted

K-Nearest Neighbor (KNN)2

ℓ̂(s) = 1
K

∑K

i=1 ℓ
′
i , {ℓ

′
1, . . . , ℓ

′
l} wrt increasing distance ‖r i − s‖

Minimum Mean Square Error (MMSE)3

ℓ̂(s) =
∑l

i=1 ℓip(ℓi |s), p(ℓi |s) =
p(s|ℓi )p(ℓi )

p(s) , p(s|ℓi ) =
∏n

j=1 p(sj |ℓi )
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Positioning Accuracy
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Figure: Accuracy of SNAPz for variable number of zones.

Mean Median Std Min Max

KNN 2.70 2.39 1.61 0.16 8.78
MMSE 2.46 2.18 1.63 0.09 8.99
SNAPz 3.64 3.37 2.41 0.06 13.21

Table: Positioning Error in meters
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Fault Models

AP Failure model

Effect

AP detected in the offline phase is not available during positioning

Feasibility

Random AP failures or AP shut down temporarily/removed
permanently

Adversary cuts off the power or jams the communication channel

Simulation

Remove the RSS values of faulty APs in the original test fingerprints

Other Fault Models

False Negative, False Positive and AP Relocation models4 that capture
the effect of unpredicted failures or malicious attacks.
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Fault Tolerance of SNAPz algorithm
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Figure: Variable number of zones

Under the AP Failure model,
M = 4 for ≤ 50% faulty APs

M = 1 for > 50% faulty APs

Using M > 4 is not a good option

M = 4 provides a good tradeoff
between accuracy and fault
tolerance

Similar behaviour for SNAPz under
other fault models

M = 4 is a good option for
SNAPft-z as well
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Comparison of Positioning Methods
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AP Failure model

Median-based method (MED)5

SNAPz is not resilient to this type
of faults

SNAPft-z exhibits higher fault
tolerance

For 60% faulty APs E = 6.38m for
SNAPft-z (9.80m, 10.40m, 12.09m
and 19.64m for MED, KNN,
MMSE and SNAPz)

Results with other fault models are
included in the paper
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Concluding Remarks

SNAP algorithm with WLAN RSS fingerprints

Trade-off between positioning accuracy and computational
complexity
The proposed SNAPft-z algorithm improves the positioning
accuracy of binary SNAP and provides higher resilience to
faults

Future Work

Develop a strategy for setting the number of zones M in
SNAPft-z algorithm
Investigate the actual power savings on Android smartphones
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