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Motivation of our work

Problem Definition
Joint source (target) tracking and sensor health state estimation in
binary sensor networks

I Binary sensor networks
I Popular for demanding and safety critical applications,

e.g. large area monitoring, target tracking

I Living with faults
I Sensing can be tampered (accidentally or deliberately)

and detection/estimation suffers from faulty sensors
I Tracking accuracy can be severely degraded

I Faulty sensors should NOT be used
I Localization algorithms typically use all sensor readings

regardless of the actual sensor’s state
I Sensor states are usually unavailable or extremely hard

to obtain in real WSN applications
I Sensor Health State Estimation: Intelligently select

(at least mostly) healthy sensors for target tracking
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Binary Sensor Network Model

Assumptions

1. A set of static sensor nodes `n = (xn, yn), n = 1, . . . ,N

2. A source moving at steady speed `s(t) = (xs(t), ys(t))

3. The source emits a continuous omnidirectional signal

zn(t) =
c

1 + dn(t)γ
+ wn(t),

where dn(t) = ||`n − `s(t)||.

Sensor Alarm Status

An(t) =

{
0 if zn(t) < T
1 if zn(t) ≥ T

IEEE International Conference on Communications, Budapest, Hungary 10 June 2013
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Sensor Fault Model

Stochastic Model
Markov Chain model with two discrete
sensor states sn(t) ∈ {F ,H}

πn(t + 1) = CTπn(t)

I Sensor state probabilities
πn(t) = [πF

n (t) πH
n (t)]T ,

πi
n(t) = P[sn(t) = i ], i ∈ {F ,H}

I C =

[
pF ,F pF ,H

pH,F pH,H

]
I Steady state probabilities πi

n =
limt→∞ P[sn(t) = i ], i ∈ {F ,H}

I Reverse Status, Stuck-At,
temporary, permanent faults, etc

H F
,F Fp,H Hp

,F Hp

,H Fp
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Fault Tolerant Target Tracking Architecture

Sensor State 

Estimation
Localization Smoothing

ˆns

ftTRACK

ˆ
sl

ˆse

s
%l

nA

Sensor State Estimation component

I ŝn(t): Estimated health state of each sensor

Localization component

I ˆ̀
s(t): estimated target location

I ês(t): estimation of the localization error (uncertainty)

Smoothing component

I ˜̀
s(t): final location estimate (more accurate)
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ML Sensor State Estimation

The estimator is based on a Markov Chain model

π̂n(t + 1) = Ĉn(t)T π̂n(t), (1)

where π̂n(t) = [π̂F
n (t) π̂H

n (t)]T , π̂i
n(t) = P[ŝn(t) = i ], i ∈ {F ,H}

Ĉn(t) =

[
p̂F ,Fn (t) p̂F ,Hn (t)
p̂H,Fn (t) p̂H,Hn (t)

]
, (2)

where p̂i,jn (t) 6= pi,j i , j ∈ {F ,H}.

Binary error signal rn(t)

rn(t) =


1 if dn(t) ≤ RI AND An(t) = 0
1 if dn(t) > RI AND An(t) = 1
0 if dn(t) ≤ RI AND An(t) = 1
0 if dn(t) > RI AND An(t) = 0

(3)
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ML Sensor State Estimation

Main Idea
Obtain ŝn(t + 1) by calculating the probability of a sensor being at
a specific state given the current error signal, i.e.

π̂
i|q
n (t) = P[sn(t) = i |rn(t) = q], i ∈ {F ,H}, q ∈ {0, 1}.

ML Sensor State Estimate

ŝn(t + 1)|rn(t)=q = arg max
i∈{F ,H}

π̂i|q
n (t), q ∈ {0, 1}. (4)

Using Bayes’ rule

π̂i|q
n (t) =

P[rn(t) = q|sn(t) = i ]π̂i
n(t)

P[rn(t) = q]
(5)

π̂i|q
n (t) =

P[rn(t) = q|sn(t) = i ]π̂i
n(t)∑

j∈{F ,H} P[rn(t) = q|sn(t) = j ]π̂j
n(t)

(6)
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ML Sensor State Estimation

Definitions
Probability of a sensor having a wrong output given its state

I phn(t) = P[rn(t) = 1|sn(t) = H]

I pfn(t) = P[rn(t) = 1|sn(t) = F ]

π̂F |1
n (t) =

pfn(t) · π̂F
n (t)

pfn(t) · π̂F
n (t) + phn(t) · π̂H

n (t)
(7)

π̂H|1
n (t) =

phn(t) · π̂H
n (t)

pfn(t) · π̂F
n (t) + phn(t) · π̂H

n (t)
(8)

π̂F |0
n (t) =

(1− pfn(t)) · π̂F
n (t)

(1− pfn(t)) · π̂F
n (t) + (1− phn(t)) · π̂H

n (t)
(9)

π̂H|0
n (t) =

(1− phn(t)) · π̂H
n (t)

(1− pfn(t)) · π̂F
n (t) + (1− phn(t)) · π̂H

n (t)
. (10)
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ML Sensor State Estimation

In case the sensor output is wrong, i.e. rn(t) = 1

ŝn(t + 1)|rn(t)=1 =

{
H if π̂H

n (t) >
pf
n(t)

pf
n(t)+ph

n(t)

F otherwise
(11)

In case the sensor output is correct, i.e. rn(t) = 0

ŝn(t + 1)|rn(t)=0 =

{
F if π̂H

n (t) <
1−pf

n(t)
2−pf

n(t)−ph
n(t)

H otherwise
(12)

I Only π̂H
n (t), phn(t) and pfn(t) need to be computed for

estimating the sensor health state, given that rn(t) is known

I Problem: rn(t) is not available (target location is unknown)

I Solution: r̃n(t) estimates rn(t) by substituting dn(t) with
d̃n(t), where d̃n(t) = ||`n − ˜̀

s(t)||
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Simple Estimator

Assumption

The error signal r̃n(t) is always equal to 1 when the sensor is
Faulty and always equal to 0 when the sensor is Healthy.

Sensor State Estimate
This means that pfn(t) = 1 and phn(t) = 0, ∀t leading to

ŝn(t + 1) =

{
H if r̃n(t) = 0
F if r̃n(t) = 1

(13)

I Intuition: If we fully trust the error signal, then the sensor
health state is reliably estimated by r̃n(t)

I Problem: Fully trusting the error signal r̃n(t) is not a good
strategy

I Solution: Incorporate previous estimations that are
encapsulated in the estimated sensor state probabilities
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Static Estimator

Assumption

The Markov Chain in the Sensor State Estimator has reached
equilibrium.

Sensor State Estimate
We may employ an estimate of the unknown steady state
probability π̂H

n to determine the sensor health state as

ŝn(t + 1)|rn(t)=1 =

{
H if π̂H

n >
pf
n(t)

pf
n(t)+ph

n(t)

F otherwise
(14)

ŝn(t + 1)|rn(t)=0 =

{
F if π̂H

n <
1−pf

n(t)
2−pf

n(t)−ph
n(t)

H otherwise
(15)
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Static Estimator

The steady state probabilities are computed with[
π̂F
n

π̂H
n

]
= ĈT

n (t)

[
π̂F
n

π̂H
n

]
, (16)

where p̂i,jn (t) in Ĉn(t) can be estimated online by

p̂i,jn (t) =
R i,j
n (t)∑

k∈{F ,H} R
i,k
n (t)

, i , j ∈ {F ,H}, (17)

where R i,j
n (t) increases by one if ŝn(t − 1) = i and ŝn(t) = j .

Calculation of phn(t) and pfn(t)

phn(t) =
(
1− Qw (t)

)(
1− Qd(t)

)
+ Qw (t)Qd(t) (18)

pfn(t) =
(
1− Qw (t)

)
Qd(t) + Qw (t)

(
1− Qd(t)

)
(19)

Qw (t) = Q
(

T−µn(t)
σw

)
, µn(t) = c

1+d̃n(t)γ
, Qd(t) = Q

(
RI−d̃n(t)

σd

)
.
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Dynamic Estimator

Main Idea
Consider the error signal not only for estimating the unknown
sensor state, but also for updating the estimated sensor state
probabilities.

[
π̂F
n (t + 1)
π̂H
n (t + 1)

]
= ĈT

n (t)

[
π̂
F |q
n (t)

π̂
H|q
n (t)

]
, q ∈ {0, 1} (20)

I Intuition: All previous observations of the error signal are
encapsulated in the estimated sensor state probabilities, thus
affecting the future estimation steps.

IEEE International Conference on Communications, Budapest, Hungary 10 June 2013
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Simulation Setup

Sensor field
100× 100 field, N = 600 sensors, single source, staircase path
M = 180

Fault model
2-state Markov Chain with varying pi,j , i , j ∈ {F ,H}.

I pH,H = 0.925 and pF ,F = 0.7 gives [πF
n πH

n ]T = [0.2 0.8]T

(20% fault time or around 120 out of 600 faulty sensors)

I pH,H = 1 corresponds to the fault-free case, pF ,F = 1
generates permanent faults

Performance Metrics

I Cumulative state estimation error Es = 1
NM

∑M
t=1

∑N
n=1 εn(t)

I εn(t) =

{
0 if ŝn(t) = sn(t)
1 if ŝn(t) 6= sn(t)

I Tracking error ET = 1
M

∑M
t=1 ||˜̀s(t)− `s(t)||

IEEE International Conference on Communications, Budapest, Hungary 10 June 2013



Introduction

- Motivation

- WSN Model

- Fault Model

Tracking
Architecture

- Block Diagram

Sensor State
Estimation

- Sensor State MLE

- Simple Estimator

- Static Estimator

- Dynamic Estimator

Simulation Results

- Simulation Setup

- Evaluation

Conclusions

Results (Permanent faults)
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I zn(t) = 5000
1+dn(t)2 + wn(t), wn ∼ N (0, 1000), T = 50 and

RI = 10

I Reverse Status faults

I Subtract on Negative Add on Positive (SNAP) fault tolerant
localization algorithm

I Adaptive particle filter with Np = 500 particles

IEEE International Conference on Communications, Budapest, Hungary 10 June 2013



Introduction

- Motivation

- WSN Model

- Fault Model

Tracking
Architecture

- Block Diagram

Sensor State
Estimation

- Sensor State MLE

- Simple Estimator

- Static Estimator

- Dynamic Estimator

Simulation Results

- Simulation Setup

- Evaluation

Conclusions

Results (Permanent and Temporary faults)

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.1  0.2  0.3  0.4  0.5

C
um

ul
at

iv
e 

E
st

im
at

io
n 

E
rr

or
 (

ε s
)

Percentage of faulty sensors (α)

Simple
Static

Dynamic

 0

 5

 10

 15

 20

 25

 30

 0  0.1  0.2  0.3  0.4  0.5

T
ra

ck
in

g 
E

rr
or

Percentage of faulty sensors (α)

SNAP+SPF
TI+SPF

ftTRACK(Simple)
ftTRACK(Static)

ftTRACK(Dynamic)

I Temporary mixed and permanent Reverse Status faults
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Concluding Remarks

I Introduced a Markov Chain fault model to generate different
types of real faults documented in the literature

I The proposed architecture addresses the joint target tracking
and sensor health state estimation problem in binary WSNs

I We focus on sensor health state estimation to intelligently
choose which sensors to trust during tracking

I Maintain a high level of tracking accuracy, even when a large
number of sensors in the field fail

I Next steps

I Incorporate the correlation of the alarm status An(t) for
neighboring sensors into the error signal rn(t)

I Decentralized architecture for multiple target tracking

IEEE International Conference on Communications, Budapest, Hungary 10 June 2013
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Types of faults

Reverse Status (RS)

I Sensors report the opposite readings than the expected ones

I Software bugs, compromised sensors, malicious network

Stuck-At-1 (SA1)

I Sensors constantly report the presence of a source

I Board overheating, low battery, wrongly programmed
threshold (i.e., low T ), deployment of small decoy sources

Stuck-At-0 (SA0)

I Sensors fail to detect the source inside their ROCn

I Dropped packets, high threshold T
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Regions of Interest

Node n
ROCn

ROI

RC

RI

Event

Alarmed Node Non-Alarmed Node

Region of Influence (ROI)

Area around the source where a sensor is alarmed with p ≥ 0.5

Region of Coverage (ROCn)

Area around a sensor n where a source (if present) it will be
detected with p ≥ 0.5
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Erroneous Sensor Behaviour
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Interpretation of the Error Signal
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rn(t) vs r̃n(t)
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Overview of SNAP

Subtract on Negative Add on Positive (SNAP) algorithm

I Event detection in binary sensor networks

I Low computational complexity and fault tolerance

Algorithm Steps

1. Grid Formation: The entire area is divided into a grid G with
dimensions Rx × Ry and grid resolution g .

2. Region of Coverage (ROC): Given G, the ROCn of a sensor is
a neighborhood of grid cells around the sensor node location.

3. Likelihood Matrix L Construction: All sensors add +1
(alarmed) or −1 (non-alarmed) to the cells that correspond
to their ROC and contributions are added for each cell.

4. Maximization: The maximum value in L matrix, denoted as
Lmax , points to the estimated source location.
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Example Application of SNAP

-1 -1 -1 -1 -2 0 0 0 0 +1

-1 0 0 0 -1 +1 -1 -1 -1 0 -1

-1 -2 -1 -1 -1 -1 +1 -1 -1 -1 0 -1

-1 -1 0 +1 +1 +1 +2 0 -1 -1 0 -1

-1 -1 0 +1 +1 +2 +3 +1 0 0 0 -1

-1 -1 0 +1 0 +1 +1 -1 -2 -1 -1 -1

-1 -1 -1 0 -1 0 0 0 -1

+1 0 0 0 0 -1

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

Event

I Square ROCn for alarmed and non-alarmed sensors

I Source is correctly localized in the grid cell with Lmax = +3
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Particle Filter Tracking

Target state and measurement model

X (t) = ΦX (t − 1) + ΓW (t − 1) (21)

Y (t) = MX (t) + U(t), (22)

where X (t) = [xs(t) ys(t) ux(t) uy (t)]T is the target state

Particle Filter Steps

A set of particles {X i (t − 1)}Np

i=1 with weights {ωi (t − 1)}Np

i=1

1. X i (t) = ΦX i (t − 1) + ΓW (t − 1)

2.
(

ˆ̀
s(t), ês(t)

)
= SNAP(ŝn(t),An(t))

3. ωi (t) = ωi (t − 1)p(t), p(t) = 1√
2πσ(t)

exp(− (X̄ i (t)− ˆ̀
s (t))2

2σ(t)2 )

4. ωi (t) = ωi (t)/
∑Np

i=1 ω
i (t) and Linear Time Resampling

5. ˜̀
s(t) =

∑Np

i=1 ω
i (t)X i (t)
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Results with SNAP (RS faults)
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Results (RS and SA faults)
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Results with SNAP (SA faults)
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Figure: SA1 faults.
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Figure: SA0 faults.
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Results with Variable Source Energy
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Figure: Temporary RS faults
(α = 25%).
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Figure: Temporary mixed faults
(α = 38%).
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Results with CE (RS faults)
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I zn(t) = 3000
1+dn(t)2 +wn(t), wn ∼ N (0, 1), T = 5 and RI = 24.5

I Centroid Estimator ˆ̀
s(t) =

(
1
P

∑P
p=1 xp,

1
P

∑P
p=1 yp

)
I (xp, yp), p = 1, . . . ,P (P ≤ N) and Ap(t) = 1

I Standard particle filter with Np = 500 particles
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Results with CE (RS and SA faults)
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