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» Binary sensor networks

» Popular for demanding and safety critical applications,
e.g. large area monitoring, target tracking

» Living with faults

» Sensing can be tampered (accidentally or deliberately)
and detection/estimation suffers from faulty sensors
» Tracking accuracy can be severely degraded

» Faulty sensors should NOT be used

» Localization algorithms typically use all sensor readings
regardless of the actual sensor's state

» Sensor states are usually unavailable or extremely hard
to obtain in real WSN applications

» Sensor Health State Estimation: Intelligently select
(at least mostly) healthy sensors for target tracking
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Assumptions

1. A set of static sensor nodes ¢, = (xp,¥n), n=1,...,N
2. A source moving at steady speed /5(t) = (xs(t), ys(t))

3. The source emits a continuous omnidirectional signal

c
Zn(t) = W + Wn(t)7
where d,(t) = ||£, — ¢s(t)]]-
Sensor Alarm Status
0 if z,(¢)

an={ 3
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mo(t) = [ef (£) w(e)]
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- Evaluation F.F F.H
p p
Condlusi » C=
onclusions |: PH’F PH’H :|

» Steady state probabilities 7 =
lim; 00 Plsn(t) =i], i € {F, H}

Fault Generation

» Diverse fault types

» Different duration, e.g.
temporary, permanent

» pMH =0.925 and
pHF = 0.7 gives
[#F 7T =[0.2 0.8]"
» pFF =1 injects
permanent faults
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- WSN Model
Faut Model sensor states s,(t) € {F,H}

- Markov Chain

Model 7Tn(t+1) — CTT(,,(Z')
Tracking

Architecture

- Block Diagram
- Localization

e » Sensor state probabilities
st o T2(8) = [ () /()]
- Simulation Setup my(t) = Plsa(t) = i], i € {F, H}
- L
= | pHF  pHH

» Steady state probabilities 7 =
limesoc Plsa(t) = i], i € {F,H}

Fault Generation

» Diverse fault types

» Different duration, e.g.
temporary, permanent

» pMH =0.925 and
pHF = 0.7 gives
[#F 7HT =[0.2 0.8]T
» pff =1 injects
permanent faults
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Reverse Status (RS)
> Sensors report the opposite readings than the expected ones
> Software bugs, compromised sensors, malicious network
Stuck-At-1 (SA1)

> Sensors constantly report the presence of a source

» Board overheating, low battery, wrongly programmed
threshold (i.e., low T), deployment of small decoy sources

Stuck-At-0 (SA0)

» Sensors fail to detect the source inside their ROC,

> Dropped packets, high threshold T
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Sensor State Estimation component
> 5,(t): Estimated health state of each sensor
Localization component

~

» (. (t): estimated target location

> &(t): estimation of the localization error (uncertainty)
Smoothing component

» 7(t): final location estimate (more accurate)
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Subtract on Negative Add on Positive (SNAP) algorithm

> Event detection in binary sensor networks

» Low computational complexity and fault tolerance

Algorithm Steps

1. Grid Formation: The entire area is divided into a grid G with
dimensions R, x R, and grid resolution g.

2. Region of Coverage (ROC): Given G, the ROC, of a sensor is
a neighborhood of grid cells around the sensor node location.

3. Likelihood Matrix £ Construction: All sensors add +1
(alarmed) or —1 (non-alarmed) to the cells that correspond
to their ROC and contributions are added for each cell.

4. Maximization: The maximum value in £ matrix, denoted as
Lmax, points to the estimated source location.
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Conclusions

» Square ROC, for alarmed and non-alarmed sensors

» Source is correctly localized in the grid cell with L., = +3
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Target state and measurement model
X(t)=oX(t—1)+TW(t—-1) (1)
Y(t) = MX(t) + U(t), (2)
where X(t) = [x:(t) ys(t) ux(t) u,(t)]” is the target state

Particle Filter Steps
A set of particles {X'(t — 1)}, with weights {w/(t — 1)},

1. Xi(t)=oX/(t —1)+TW(t-1)

2. (Zs(t),és(t)) = SNAP(3,(t), An(t))

3. wi(t) =w'(t = 1)p(t), P(t) = 7y exp(— KU Fo’y
4. Wi(t) = aJ"(t)/Z,’-\I:"1 w/(t) and Linear Time Resampling

5. 7s(t) = S ' (6)X(2)
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The estimator is based on a Markov Chain model

Fa(t+1) = Co(t)T7n(t), (3)
where () = [#F () #H(8)]T, # (£) = P[a.(t) = i], i € {F, H}
&= Bl B ), @

where pii(t) # p'J i,j € {F,H}.

Binary error signal r,(t)

if dn(t
if dn(t
if dn(t
if dn(t

< R; AND A,(t)
> R AND A,(t)
t)
)

ra(t) =

< R/ AND A,(

0

1

1 (5)
> R/ AND A,(t) =0

O O = =
~— — — —
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Main Idea
Obtain §,(t + 1) by calculating the probability of a sensor being at
a specific state given the current error signal, i.e.

#19(t) = Plsa(t) = ilra(t) = ql, i € {F,H}, q € {0,1}.

ML Sensor State Estimate

max #119(t), q € {0,1}. (6)

So(t+ 1)|r(t)=qg =
Sa(t + 1)]r(t)=q arg max

Using Bayes' rule
P[rn(t) - q|5n(t) - I]ﬁ-k(t)
Pl(t) = )
P[rn(t) = q|5n(t) = ’]ﬁn(t) _ (8)
Zje{RH} P[ra(t) = qlsa(t) = j]7n(t)

#79(t) =
#19(t) =
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Definitions

Probability of a sensor having a wrong output given its state

> pp(t) = Plm(t) = 1|sq(t) = H]

> pa(t) = Plra(t) = Lisa(t) = F]

AF\l(t) pZ(t)-’ﬁF(t)
ph(t) - 5 (8) + po(e) - 77 (2)

AH\l(t) pn(t) AH(t)
ph(t) - &5 (8) + ph(t) - #7(2)

(1= pi(t) - 75 (1)

00 = T ey

(1 — pa(t) - &/ (t)

p (1) + (1= pj(t)) -

T (1 pL(e) - AE(E) + (1 ph(D)) -

(12)

> >

I ST
~—~ —~~
~ ~
N—r N—r
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In case the sensor output is wrong, i.e. r,(t) =1

Introduction

- Motivation e A f(t)
- ode N H if #0(¢t __Pnll)
WSN Model S,,(l' + 1) (=1 = { T ( ) > pr(t)+ph(t) (]_3)
Fault Model F otherwise
- Markov Chain Model
peda In case the sensor output is correct, i.e. r,(t) =0
- Block Diagram
- Localization f
- Smoothing R F f ~H 1_P7n(t)
S Sa(t + 1)]r(t)=0 = " Tn (t_) < 2750 pI(D) (14)
H otherwise
Simulation Results
- Simulation Setup
- Evaluation
Conclusions » Only #7(t), ph(t) and pf(t) need to be computed for

estimating the sensor health state, given that r,(t) is known
» Problem: r,(t) is not available (target location is unknown)
> Solution: 7,(t) estimates r,(t) by substituting dn(t) with
dn(t), where d,(t) = ||, — 4s(t)]]
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Assumption

The error signal ¥,(t) is always equal to 1 when the sensor is
Faulty and always equal to 0 when the sensor is Healthy.

Introduction

- Motivation
- WSN Model

Fault Model Sensor State Estimate

-Markov Chain Model  This means that pf(t) = 1 and p/(t) = 0, Vt leading to

Tracking
Architecture o~
- Block Diagram Sa(t+1) = H iffy(t) =0 (15)
- Localization n - F |f ¥ (t) =1
- Smoothing n -

Sensor State
Estimation
Simulation Results

- i ey » Intuition: If we fully trust the error signal, then the sensor
health state is reliably estimated by 7,(t)

Conclusions
» Problem: Fully trusting the error signal 7,(t) is not a good
strategy

» Solution: Incorporate previous estimations that are
encapsulated in the estimated sensor state probabilities
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Assumption
The Markov Chain in the Sensor State Estimator has reached
equilibrium.

Sensor State Estimate
We may employ an estimate of the unknown steady state
probability 7/ to determine the sensor health state as

N H if 71 > 7—

So(t + 1), (0)m1 = A (t)+ph(t) (16)
" F if ﬁH < 1p—,,)

So(t+ 1) t)=0 = b OtherW|se ph(t)—ph(t) (17)
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The steady state probabilities are computed with

BIR:CIERE (19
where pii(t) in C,(t) can be estimated online by
AL Ri’j( ) i F.H 19
pn() Zke{FH}R,’,k( )? aJG{ ) }3 ( )
where RIJ(t) increases by one if 3,(t — 1) = i and 3,(t) = J.
Calculation of p/(t) and pf(t)
pr(t) = (1= Qu(t)) (1 — Qu(t) + Qu(t)Qu(t)  (20)
Pr(t) = (1= Qu(t)) Qu(t) + Qu(t)(1 - Qu(t))  (21)

Qu(t)=Q (w) pn(t) = T Qu(t) = Q (R’Ij‘i‘i(ﬂ)
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Main ldea

Consider the error signal not only for estimating the unknown
sensor state, but also for updating the estimated sensor state
probabilities.

~F n ﬁ_qu
[ ;:Z_I(til) ] =1 (1) w”qgg , g€ {0,1} (22)

» Intuition: All previous observations of the error signal are
encapsulated in the estimated sensor state probabilities, thus
affecting the future estimation steps.
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Sensor field
100 x 100 field, N = 600 sensors, single source, staircase path
M =180

Fault model B
2-state Markov Chain with varying p'+, i,j € {F, H} to generate
temporary and permanent faults

Performance Metrics

» Cumulative state estimation error & = 7k SMLSN et

2 O ifE(E) = si(t)
n(t){l if 3n(t) # sa(t)

» Tracking error E7 = Eﬁl |15(t) — £5(t)]]
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Tracl‘qng g 006 [ 10 ¥
Architecture 2 ’I/’
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- Smoothing 0.02 0 il
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Estimation Percentage of faulty sensors (o) Percentage of faulty sensors (o)

Simulation Results
- Simulation Setup

- Evaluation
Conclusions > 2,(t) = gy + Wa(t), wa ~ N(0,1000), T = 50 and
R =

—
o

» Reverse Status faults

» Adaptive particle filter with N, = 500 particles
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Cumulative Estimation Error (g)

0.2
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0.14
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0.1
0.08
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0.02

» Temporary mixed and permanent Reverse Status faults
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2 15
= £
S
/ £
/ = 10
5
/ et same oo T
0 i
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

Percentage of faulty sensors (o))

Percentage of faulty sensors (o)
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» Introduced a Markov Chain fault model to generate different
types of real faults documented in the literature

» The proposed architecture addresses the joint target tracking
and sensor health state estimation problem in binary WSNs

» Maintain a high level of tracking accuracy, even when a large
number of sensors in the field fail

» Next steps

» Incorporate the correlation of the alarm status A,(t) for
neighboring sensors into the error signal r,(t)
» Decentralized architecture for multiple target tracking
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O Alarmed Node Non-Alarmed Node

O O o

Region of Influence (ROI)
Area around the source where a sensor is alarmed with p > 0.5

Region of Coverage (ROC,)

Area around a sensor n where a source (if present) it will be
detected with p > 0.5
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» False Positive and False Negative sensors
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O
o © e

False Negative

O Alarmed Node

O

O O

(@]

False Positive

P

Non-Alarmed Node

O

» False Positive and False Negative sensors
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> r,(t) =1 (sensor output is wrong)

» sensor n is inside the RO/ and is non-alarmed or
» sensor n is outside the RO/ and is alarmed
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> r,(t) =1 (sensor output is wrong)
» sensor n is inside the RO/ and is non-alarmed or
» sensor n is outside the RO/ and is alarmed

> r,(t) = 0 (sensor output is correct)

» sensor n is inside the RO/ and is alarmed or
» sensor n is outside the RO/ and is non-alarmed
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> In this scenario 7,(t) # r,(t) for 6 sensors
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Figure: SAQ faults.
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Figure: Temporary RS faults

(a0 = 25%).
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> 2,(t) = gty + Wa(t), wa ~ N(0,1), T =5and R, = 24.5

» Centroid Estimator /,(t) = (,l, Z,f:l Xp, B Zgzl yp>
» (Xp,¥p), p=1,...,P(P<N)and Ay(t) =1
» Standard particle filter with N, = 500 particles
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