Fault Tolerant Positioning using WLAN Signal Strength Fingerprints

C. Laoudias, M. P. Michaelides and C. G. Panayiotou

KIOS Research Center for Intelligent Systems and Networks
Department of Electrical & Computer Engineering
University of Cyprus

Outline

- Fault Models
- Nearest Neighbor method
- Performance Evaluation
 - Measurement Setup
 - Experimental Results
- Conclusions

Region of Coverage (RoC)

Fault Tolerance

- The focus of positioning methods so far has been on improving accuracy
- In real world, WLAN APs can fail or exhibit erroneous behaviour, thus compromising performance
 - APs may be unavailable during positioning due to unpredicted failures, e.g. power outages
 - Positioning methods are susceptible to attacks that corrupt the expected RSS values
- We treat failures and attacks in a unified framework, because they both inject faults during positioning
- Assume that the reference data are not corrupted and study RSS attacks and failures in the online phase

AP Failure model

Effect

 Several APs used in the offline phase are not available during positioning

Feasibility

- Unpredicted AP failures, e.g. power outages, WLAN system maintenance, AP firmware upgrades
- Adversary cuts off the power supply of an AP or uses specialized equipment to jam the communication channel

Simulation

 Remove the RSS values of the faulty APs in the original test fingerprints

False Negative model

Effect

 The faulty AP is no longer detected in some locations inside its original RoC

Feasibility

 Block the propagation path, e.g. furniture or equipment, so that AP signal cannot be detected in locations where it was previously weak

Simulation

- Ignore valid RSS readings for a set of APs in a number of test fingerprints
- The AP Failure model is an extreme case of this model

False Positive model

Effect

 The faulty AP is detected during positioning in locations outside its original RoC

Feasibility

- Remove obstructions, e.g. heavy objects or equipment, from the propagation path so that AP signal can travel further
- Under attack, a rogue AP is deployed and programmed to replicate an existing AP

Simulation

 Inject random RSS values to the test data for a set of APs that would otherwise be undetected in those locations where the respective test fingerprints are collected

AP Relocation model

Effect

 The faulty AP is detected during positioning inside an area that is different than the expected one

Feasibility

- An AP is moved to a new location, e.g. for network operation reasons
- The attacker physically relocates an AP or launches a joint attack i.e. impersonates an AP and at the same time eliminate the AP signals through jamming

Simulation

 Replace the RSS readings of the corrupted AP in the test data with the values of another randomly selected AP

RSS Attack models

Linear Attack model¹

- Effect
 - RSS values of an AP are amplified or attenuated
- Feasibility
 - Increase the AP transmit power or place a material, e.g. glass, metal, foil, in front of the AP antenna
- Simulation
 - Perturb the original RSS values in the test data by a constant attenuation or amplification factor

Additive Gaussian Noise model²

- Effect
 - RSS values of an AP have higher noise variance
- Simulation
 - Perturb the original RSS values with additive Gaussian noise

Nearest Neighbor method

$$\hat{\ell}(s) = \arg\min_{\ell_i} D_i \qquad D_i = \sum_{j=1}^n (r_{ij} - s_j)^2$$

$$D_{i}^{median} = \underset{j=1}{med} \left(r_{ij} - s_{j} \right)^{2}$$

$$D_i^0 = \sum_{i \in R_i \cap S} d_{ij} + \sum_{i \in R_i \setminus S} d_{ij} + \sum_{i \in S \setminus R_i} d_{ij} \qquad d_{ij} = (r_{ij} - s_j)^2$$

$$D_i^1 = \sum_{j \in R_i \cap S} d_{ij} + \sum_{j \in S \setminus R_i} d_{ij}$$

$$D_i^2 = \sum_{j \in R_i \cap S} d_{ij} + \sum_{j \in R_i \setminus S} d_{ij}$$

Measurement Setup

- Area 110x45m on the 2nd floor @ VTT Research Center, Finland
- 107 reference locations with 2-3m spacing
- 31 WLAN APs (9.7 APs detected on average)

Training data

location (3210 fingerprints in total)

Testing data

30 fingerprints per reference Route of 192 locations sampled 3 times (576 fingerprints in total)

AP Failure model

- The median-based KNN (medKNN) performs slightly better than the standard KNN method
- KNN (D¹) method can tolerate up to 65% failed APs, contrary to 35% for medKNN (Mean Error 5m)

False Negative model

- medKNN performs better than the standard KNN method, followed by MMSE
- KNN (D¹) method can tolerate up to 85% faulty APs, contrary to 45% for medKNN (Mean Error 5m)

False Positive model

- medKNN has the best performance and can tolerate up to 45% faulty APs compared to 15% for KNN and MMSE
- Using metric D² greatly improves the performance of KNN method, but cannot achieve the fault tolerance of medKNN

AP Relocation model

- All methods perform equally well for <30% corrupt APs, but medKNN is better for >30% corrupt APs
- Performance of KNN is only marginally improved with D¹, while D² causes severe degradation

Linear Attack model (-20dBm)

- KNN has the best performance, followed by MMSE. Mean Error increases rapidly for medKNN, especially if we have >50% faulty APs
- Metrics D¹ or D² do not improve fault tolerance over the standard KNN method (D⁰)

Linear Attack model (+20dBm)

- For KNN and MMSE Mean Error is <5m even for 100% faulty APs, while medKNN degrades sharply
- Using D² is not a good option as the Mean Error explodes, while D¹ performance is similar to D⁰

Additive Gaussian Noise model (σ_n =20dBm)

- For Mean Error <5m KNN and MMSE methods can tolerate 70% faulty APs, compared to 45% for medKNN
- Standard KNN (D⁰) exhibits higher fault tolerance than the variants using the distance metrics D¹ or D²

Summary

	medKNN	KNN (D ⁰)	KNN (D ¹)	KNN (D ²)
AP Failure	+	+	++	
False Negative	+	+	++	
False Positive	++	-		+
AP Relocation	+	-	-	
Attenuation	-	++	-	
Amplification	-	++	++	
Gaussian Noise	-	++	+	

Conclusions

- Fault tolerance of positioning methods is important, but has received little attention because the focus has been on improving accuracy
- We introduced several realistic fault models to capture the effect of fails or attacks and described how to simulate them using real test data
- We analyzed the distance metric in KNN method, discussed alternative metrics and studied the performance of the variants in the presence of faults
- Future work: Develop robust detection schemes to decide the type of the fault/attack in order to select the appropriate distance metric

References

- [1] Y. Chen, K. Kleisouris, X. Li, and R. P. Martin, "The robustness of localization algorithms to signal strength attacks: a comparative study," in *International Conference on Distributed Computing in Sensor Systems (DCOSS)*, 2006, pp. 546–563.
- [2] A. Kushki, K. Plataniotis, and A. Venetsanopoulos, "Sensor selection for mitigation of RSS-based attacks in wireless local area network positioning," in *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2008, pp. 2065–2068.
- [3] Z. Li, W. Trappe, Y. Zhang, and B. Nath, "Robust statistical methods for securing wireless localization in sensor networks," in *International Symposium on Information Processing in Sensor Networks (IPSN)*, 2005, pp. 91–98.

Thank you

Contact

Christos Laoudias
KIOS Research Center for Intelligent Systems and Networks
Department of Electrical & Computer Engineering
University of Cyprus

Email: laoudias@ucy.ac.cy